Publikationen

Other Publications | 2024

BEST Centre's Day 2024

External Link Details

Green Carbon Liquids - staged condensation from lab-scale pyrolysis; Green Gas - Green Heat for Industrie from Biogenic Waste; Biohydrogen - Implementation of Dark Fermentation for Industrial Wastewater Treatment; Effects of the climate crisis and pesticide use on fatty acida in the food web; Syngas production from biogenic residues and waste via advanced dual fluidized bed gasification; New developments in gas cleaning for the production of C-based products and fuels via gasification; Advancements in Fischer-Tropsch synthesis using a slurry bubble column reactor; Biofuels - a crucial part of decarbinisation; Speed-Up Algorithms for advanced simulations; Multiscale modeling of metal oxide and biomass conversion for chemical looping processes; Multiscale modeling of metal oxide and biomass conversion for chemical looping processes; Model-Based Control of the Generated Steam Mass Flow in a Fluidized-Bed Waste Incineration Plant; Modular, predictive, optimization-based supervisory control of multi-energy systems; Monitoring of a Renewable Flow Battery; Use cases of optimally planned multi-energy systems with OptEnGrid: hotel resort and renewable energy communities; Optimal Design of Multi-Energy Systems using OptEnGrid; Sustainability assessment: mere obligation or a key to success; 

Other papers | 2024

Energy Knowledge Transfer To The Next Generation - Project "Energie und I"

Oberbauer C, Enigl M, Aigenbauer S. Energy Knowledge Transfer To The Next Generation - Project "Energie und I". Centre's Day 2024

Download PDF Details
Other Publications | 2024

Microgrid Research Laboratory - esmperimental validation of energy management technologies

Aigenbauer S, Liedtke P, Maier C, Oberbauer C, Sturmlechner R, Zillner L, Haas R. Microgrid Research Laboratory - experimental validation of energy management technologies. Centre's Day 2024.

Download PDF Details
Other papers | 2024

Optimized Planning of Distributed Multi-Energy-Systems

Oberbauer C, Aigenbauer S, Zillner L, Mair C, Sturmlechner R, Liedtke P, Haas R. Optimized Planning of Distributed Multi-Energy-Systems. Centre's Day 2024.

Download PDF Details
Peer reviewed papers | 2024

Potential of user training for reducing emissions of firewood stoves

Sturmlechner R, Schmidl C, Klauser F, Kirchsteiger B, Kasper-Giebl A. Potential of user training for reducing emissions of firewood stoves.Atmospheric Environment X. 2024.24:100287.

External Link Details

Emissions from wood-burning stoves contribute to local air pollution. However, it is difficult to determine the real emissions from such stoves, especially due to unknown user behaviour, which can have a large impact on emissions. In this study, the low-cost emission reduction measure “user training” was evaluated to determine its emission reduction potential on firewood stoves. Two sets of tests were carried out. First, a field measurement campaign was conducted in Styria (Austria) with four wood stoves, where gaseous and particulate emissions were measured before and after a user training on optimised heating behaviour (e.g. ignition mode, fuel properties and placement in the combustion chamber, air supply). Gaseous emissions (carbon monoxide – CO, organic gaseous compounds – OGC) were measured continuously, while particulates were measured in batches, in undiluted and hot as well as in diluted and cooled flue gas in parallel with a specific field measurement setup. In addition, particle filters were analysed to quantify the concentration of the carcinogenic compound benzo(a)pyrene (BaP). Second, user training workshops were conducted. These tests had a simple measurement setup in order to increase the number of tests. Thus, only CO emissions were evaluated.

The results show that real life emissions in the field are high and have a high variability compared to laboratory tests and official type test results. However, user training showed a significant reduction of CO, OGC, TSP and BaP emissions of 42%, 57%, 45% and 76% (median), respectively. In addition, TSPsum (sum of hot and cooled particle emission samples) emissions decreased by 39% (median) after user training. The relative reduction rates of all batches show that the highest emission reduction potential was identified for BaP, with a reduction rate of up to 97%. The results of the workshop tests confirmed the high variability in user behavior and the range for the emission reduction potentials, with a median CO reduction of 41%.

The emission reduction potential of the user training measure is comparable to state-of-the-art technological measures such as electrostatic precipitators and catalysts. However, these measures are costly and require a high level of technical sophistication. User training, on the other hand, is relatively cheap, easy to implement and suitable for all users. Of course, there is some risk that trained end-users will revert to their old habits, leading to higher emissions again. Therefore, regular training may be necessary to maintain the higher level of performance. As we did not assess this aspect in our work, further research would be needed to prove this theory.

Other Publications | 2023

Microgrid Forschungslabor für 100 % dezentrale Energieversorgung

E7 und E8 Ergebnisbericht: Innovative Konzepte für marktfähige Produkte und Dienstleistungen

Download PDF Details

Die Erkenntnisse der Arbeitspakete I, II und III bildeten die Grundlage, um Konzepte für
innovative Produktentwicklungen von Systemkomponenten für Microgrids zu entwickeln und
diese fertigzustellen. Dazu erfolgte in Arbeitspaket I die Analyse und Planung der verwendeten
Wärme-, Strom- und Kältetechnologien, welche in AP II installiert und ins lokale System
integriert wurde. Die Datenerfassung, Monitoring und Bewertung des Nutzerverhaltens erfolgte
im Anschluss in AP III. Dadurch wurden die Rahmenbedingungen geschaffen um neue
Produkte und Dienstleistungen zu entwickeln und zu testen.

Other Publications | 2023

Microgrids and Smart Energy Communities - Reference Projects and Use Cases

Aigenbauer S, Stadler M, Liedtke P, Sturmlechner R; Maier C, Mansoor M, Oberbauer C, Alavi F, Houben N, Haas R. Microgrids and Smart Energy Communities - Reference Projects and Use Cases. BEST Center Day. 28 June 2023

Download PDF Details
Peer reviewed papers | 2023

Optimal dispatch of a multi-energy system microgrid under uncertainty: a renewable energy community in Austria

Houben N, Cosic A, Stadler M, Mansoor M, Zellinger M, Auer H, Ajanovic A, Haas R. Optimal dispatch of a multi-energy system microgrid under uncertainty: a renewable energy community in Austria. Applied Energy. 1 May 2023.337:120913

External Link Details

Microgrids can integrate variable renewable energy sources into the energy system by controlling flexible assets locally. However, as the energy system is dynamic, an effective microgrid controller must be able to receive feedback from the system in real-time, plan ahead and take into account the active electricity tariff, to maximize the benefits to the operator. These requirements motivate the use of optimization-based control methods, such as Model Predictive Control to optimally dispatch flexible assets in microgrids. However, the major bottleneck to achieve maximum benefits with these methods is their predictive accuracy. This paper addresses this bottleneck by developing a novel multi-step forecasting method for a Model Predictive Control framework. The presented methods are applied to a real test-bed of a renewable energy community in Austria, where its operational costs and CO2 emissions are benchmarked with those of a rule-based control strategy for Flat, Time-of-Use, Demand Charge and variable energy price tariffs. In addition, the impact of forecast errors and electric battery capacity on energy community operational savings are examined. The key results indicate that the proposed controller can outperform a rule-based dispatch strategy by 24.7% in operational costs and by 8.4% in CO2 emissions through optimal operation of flexibilities if it has perfect foresight. However, if the controller is deployed in a realistic environment, where forecasts for electrical load and PV generation are required, the same savings are reduced to 3.3% for cost and 7.3% for CO2, respectively. In such environments, the proposed controller performs best in highly dynamic tariffs such as Time-of-Use and Real-time pricing rates, achieving real cost savings of up to 6.3%. These results show that the profitability of optimization-based control of microgrids is threatened by forecast errors. This motivates future research on control strategies that compensate for forecast errors in real-world operation and more accurate forecasting methods.

Other Publications | 2023

Optimized Planning of Microgrids and Smart Energy Communities

Aigenbauer S, Stadler M, Liedtke P, Sturmlechner R, Maier C, Mansoor M, Oberbauer C, Alavi F, Houben N, Haas R. Optimized Planning of Microgrids and Smart Energy Communities. BEST Center Day. 28 June 2023

Download PDF Details

Microgrids generate and store energy for self consumption (electricity, heating, cooling, etc.). Decentralized and renewable generation and storage technologies, as well as energy strategies increase efficiency, resilience, grid stability, independency of imports, sustainability, and climate neutrality.

Other Publications | 2023

Smart Microgrid Controller and Microgrid Research Laboratory

Stadler M, Aigenbauer S, Mansoor M, Oberbauer C, Houben N, Liedtke P, Sturmlechner R, Maier C, Alavi F, Haas R. Smart Microgrid Controller and Microgrid Research Laboratory. BEST Center Day. 28 June 2023

Download PDF Details

To ensure that energy is optimally used on site in local energy grids/microgrids and to achieve cost and/or emission reduction targets, the technologies are controlled by predictive and adaptive microgrid controllers. Based on realtime measurement data as well as load, generation, market and weather forecasts, the optimal deployment plan for the local energy grid is thus calculated using mathematical
optimization algorithms. Synergies of different technologies and sectors (electricity, heating, cooling, mobility, etc.) are taken into account, resulting in high energy efficiency in the system.

Conference presentations and posters | 2022

BEST-Day

Sustainable biorefineries and digitalization

Schwabl M, Wopienka E, Drosg B, Kuba M, Weber G, Eßl M, Gölles M, Kaiermayer V, Liedte P, Fuhrmann M. BEST-Day: Sustainable biorefineries and digitalization. 7th Central European Biomass Conference CEBC 2023. 18. January 2023. Graz. Oral Presentation.

Download PDF Details

List of presentations:

Biorefineries

  • Learnings from biomass combustion towards future bioenergy applications (M. Schwabl)
  • Green Carbon perspectives for regional sourcing and decarbonization (E. Wopienka)
  • Bioconversion processes for renewable energy and/or biological carbon capture and utilisation (B. Drosg)
  • Second generation biomass gasification: The Syngas Platform Vienna – current status and outlook (M. Kuba)
  • Utilization of syngas for the production of fuel and chemicals – recent developments and outlook (G. Weber)

Digital methods, tools and sustainability

  • Evaluation of different numerical models for the prediction of NOx emissions of small-scale biomass boilers (M. Eßl)
  • Digitalization as the basis for the efficient and flexible operation of renewable energy technologies (M. Gölles)
  • Smart Control for Coupled District Heating Networks (V. Kaisermayer)
  • Integrated energy solutions for a decentral energy future - challenges and solutions (P. Liedtke)
  • Wood-Value-Tool: Techno-economic assessment of the forest-based sector in Austria (M. Fuhrmann)
Other Publications | 2022

Energiegemeinschaften im Tourismussektor

External Link Details

Der Leitfaden „Energiegemeinschaften im Tourismus“ zeigt, welche Möglichkeiten Energiegemeinschaften für Tourismusbetriebe, ihre Beschäftigten und Menschen, die in Tourismusregionen leben, bieten können und wie eine Energiegemeinschaft ins Leben gerufen werden
kann.

Other Publications | 2022

Grundlagenforschung Smart- und Microgrids / Endbericht

Innovative, selbstlernende Systemregler für dezentrale Energieressourcen & Microgrids

Michael Zellinger, Michael Stadler

Download PDF Details

Mikro-Netze (Microgrids), ein Unterbereich der Intelligenten Strom/Energie-Netze (Smartgrids),
die sich durch eine enge räumliche Bindung von Energieerzeugungseinheiten und Verbraucher
auszeichnen wird international ein sehr starkes Wachstum zugeschrieben. Microgrids sind kleine,
lokale Energienetze für Strom, Wärme und Kälte, die Haushalte, Betriebe und Gemeinden mit
Energie versorgen. Diese lokalen und regionalen Konzepte der Energieversorgung können in
Zukunft einen wesentlichen Beitrag in Richtung Energieunabhängigkeit und effizientere
Integration von Erneuerbaren in das Energiesystem leisten. Sie können ihren Energiebedarf
selbstständig aus erneuerbaren Energien oder anderen Energieformen decken, etwa Biomasse,
Wärmepumpen, PV, Windräder oder Kraftwärmekopplungen. Diese können nach den
individuellen Zielen der Gemeinden, Haushalte oder der Betriebe gesteuert werden, um
Kostenreduktionen, CO2 Einsparungen oder eine Erhöhung des Unabhängigkeitsgrades zu
realisieren. Sie berechnen den aktuellen und zukünftigen Verbrauch und können Energie im
Bedarfsfall dorthin verlagern, wo sie gerade benötigt wird, oder sie reduzieren den
Energieverbrauch direkt.

Other Publications | 2022

Microgrid Forschungslabor für 100 % dezentrale Energieversorgung

Projektabschlussbericht (E13)

Download PDF Details

Die Energiewende in Richtung dezentraler Energieversorgung und der stetige Ausbau
erneuerbarer Energieressourcen erfordert ein angepasstes Energienetz (Strom, Wärme und
Kälte) mit einem flexiblen, ausbau- und integrationsfähigen Regelungssystem, welches
bestehende Energieversorgungsunternehmen (EVU) Systeme komplementiert, Netze
entlastet und die Notwendigkeit des teuren Netzausbaus verringert. Intelligente Mikro-Netze
(Microgrids), ein Bereich der Strom- und Energie-Netze (Smartgrids), erfüllen diese
Anforderungen. Durch Microgrids entstehen lokale Energiemärkte, welche lokale
Ungleichgewichte von den Verbundnetzen fernhalten und somit das Angebot und den
Verbrauch bereits auf lokaler Ebene ausbalancieren (wie z.B. Energiegemeinschaften).
Zusätzlich können die regionale Erzeugung und der Verbrauch von Strom um die Wärme-,
Kälte- und Gas-Seite ergänzt werden. Dies ergibt somit ein ganzheitliches regionales
Energiesystem, welches die gesamte Energieeffizienz erhöht und auch positive Netzeffekte
für den Energieversorger mit sich bringt. Microgrids liefern die Möglichkeit eine 100%ige
dezentrale Energieversorgung zu erreichen.
Gegenstand des Projekts „Microgrid Lab 100%“ war es bestehende und neue
wissenschaftliche Arbeiten und F&E-Ergebnisse zu Microgrids (mathematische &
physikalische Modellierung, modellbasierte Steuerungsmethoden, Regelung mit künstlicher
Intelligenz, Kommunikationsmethoden, Datenerfassung und der Austausch zwischen
Energieversorger, privaten Kunden und Gebäudemanagementsystemen) in einem realen
Umfeld zu evaluieren und auf wissenschaftlicher Ebene weiter zu entwickeln.
Projektinhalte und Projektziele waren die wissenschaftliche Planung und Inbetriebnahme des
Microgrid Forschungslabors, eine Nutzerbefragung, die Entwicklung von Testzyklen und ein
Monitoring, um mit den Ergebnissen die Optimierungsalgorithmen weiterzuentwickeln. Das
über das Projekt hinausgehende Ziel ist die Etablierung des Microgrid Forschungslabors für
verschiedene Wirtschaftszweige, um Planungs-, Steuerungs-, Integrations- und
Kommunikationskonzepte in Echtzeit zu entwickeln und für den Markt zu testen. Die
Involvierung von Industriepartner (u.a. COMET-Partner: EVN AG, Netz NÖ GmbH, Wien
Energie, meo Energie, Wüsterstrom) bereits während der Projektlaufzeit und der Aufbau eines
Kompetenznetzwerkes zu Microgrids, mit Unterstützung des Bau.Energie.Umwelt Cluster und
des Technopolmanagement Wieselburg, trugen zu dieser Zielerreichung wesentlich bei.
Konkret umfasst das geplante Microgrid Forschungslabor das Umfeld des Technologie- und
Forschungszentrum (TFZ) Wieselburg-Land sowie das neue Feuerwehrhaus der
Stadtgemeinde Wieselburg und Gemeinde Wieselburg-Land.

Peer reviewed papers | 2021

Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed

Mansoor M, Stadler M, Auer H, Zellinger M. Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed. International Journal of Hydrogen Energy.2021.

External Link Details

This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).

Peer reviewed papers | 2021

Dekarbonisierung in Salzburgs Skigebieten – Entwicklung von Optimierungsalgorithmen und Energiemanagementsystemen zur Steigerung der Energieeffizienz, Minimierung von Emissionen und Optimierung von Flexibilitäten [Decarbonization of the skiing areas in

Kritzer S, Passegger H, Ayoub T, Liedtke P, Zellinger M, Stadler M, Iglar B, Korner C, Aghaie H. Dekarbonisierung in Salzburgs Skigebieten – Entwicklung von Optimierungsalgorithmen und Energiemanagementsystemen zur Steigerung der Energieeffizienz, Minimierung von Emissionen und Optimierung von Flexibilitäten [Decarbonization of the skiing areas in Salzburg – development of optimization algorithms and energy management systems to increase energy efficiency, minimize emissions and optimize flexibility]. Elektrotechnik und Informationstechnik. 31 May 2021.

External Link Details

Winter tourism is an energy-intensive branch of industry. The aim of the FFG funding project Clean Energy for Tourism is to support Salzburg’s skiing areas on the way to decarbonization by developing technologies and business models. In this article, the developed ICT infrastructure, the optimization algorithms and the business models are presented.

Reports | 2021

Energiespeicher in Österreich

Marktentwicklung 2020

Biermayr P, Aigenbauer St, Enigl M, Fink C, Knabl S, Leonhartsberger K, Matschegg D, Prem E, Strasser C, Wittmann M. Energiespeicher in Österreich Marktentwicklung 2020. 2021

External Link Details
Other Publications | 2021

Leitfaden: Energiegemeinschaften im Tourismussektor

Iglar B, Fina B, Jung M, Markotsky-Kolm E, Tölzer T, Zellinger M, Liedtke P, Oberbauer C. Leitfaden: Energiegemeinschaften im Tourismussektor. Klima- und Energiefonds. December 2021.

Details
Other Publications | 2021

Microgrid Forschungslabor für 100 % dezentrale Energieversorgung

E 3 Ergebnisbericht (01.01.2019 bis 30.04.2021)

Download PDF Details

Dieser Ergebnisbericht zeigt die Ergebnisse zu den gesammelten Lastkurven und Datensätzen
im Microgrid Forschungslabor in Wieselburg (Microgrid Lab). Die Ergebnisse beziehen sich
auf die Technologien, Messgeräte, Strom-, Heiz- und Kühllasten und Marktdaten wie z.B.
Stromtarife und verschiedene Energie- und Brennstoffpreise.

Peer reviewed papers | 2021

Mixed-integer linear programming based optimization strategies for renewable energy communities

Cosic A, Stadler M, Mansoor M, Zellinger M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy. 237.2021

External Link Details

Local and renewable energy communities show a high potential for the efficient use of distributed energy technologies at regional levels according to the Clean Energy Package of the European Union. However, until now there are only limited possibilities to bring such energy communities into reality because of several limitation factors. Challenges are already encountered during the planning phase since a large number of decision variables have to be considered depending on the number and type of community participants and distributed technologies. This paper overcomes these challenges by establishing a mixed-integer linear programming based optimal planning approach for renewable energy communities. A real case study is analyzed by creating an energy community testbed with a leading energy service provider in Austria. The case study considers nine energy community members of a municipality in Austria, distributed photovoltaic systems, energy storage systems, different electricity tariff scenarios and market signals including feed-in tariffs. The key results indicate that renewable energy communities can significantly reduce the total energy costs by 15% and total carbon dioxide emissions by 34% through an optimal selection and operation of the energy technologies. In all the optimization scenarios considered, each community participant can benefit both economically and ecologically.

Reports | 2021

OptEnGrid Optimal integration of heat, electricity and gas systems to increase efficiency and reliability

Download PDF Details

OptEnGrid is a cross-sectoral multi-energy system optimization tool for the optimal planning and dispatch of the Distributed Energy Resource (DER) technologies in smart- and microgrids. The methodology of OptEnGrid considers an optimization model which is based on Mixed-Integer Linear Programming (MILP) framework. The following sub-sections provide more details about the energy flow and system optimization inside OptEnGrid and the choice of the optimization over simulation

Peer reviewed papers | 2021

Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions

Mansoor M, Stadler M, Zellinger M, Lichtenegger K, Auer H, Cosic A. Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions. Energy. 2021:215;119095.

External Link Details

The optimal design of microgrids with thermal energy system requires optimization techniques that can provide investment and scheduling of the technology portfolio involved. In the modeling of such systems with seasonal storage capability, the two main challenges include the low temporal resolution of available data and the non-linear cost versus capacity relationship of solar thermal and heat storage technologies. This work overcomes these challenges by developing two different optimization models based on mixed-integer linear programming with objectives to minimize the total energy costs and carbon dioxide emissions. Piecewise affine functions are used to approximate the non-linear cost versus capacity behavior. The developed methods are applied to the optimal planning of a case study in Austria. The results of the models are compared based on the accuracy and real-time performance together with the impact of piecewise affine cost functions versus non-piecewise affine fixed cost functions. The results show that the investment decisions of both models are in good agreement with each other while the computational time for the 8760-h based model is significantly greater than the model having three representative periods. The models with piecewise affine cost functions show larger capacities of technologies than non-piecewise affine fixed cost function based models.

Reports | 2021

Planung zellularer Energiesysteme

Teil 1: Effektive integrierte Investitions- und Betriebsplanung von Energiezellen

VDE Verband der Elektrotechnik e.V. Energietechnische Gesellschaft (ETG)

External Link Details

In einem zellularen Energiesystem wird die physikalische Balance zwischen Energieangebot und -nachfrage so weit als möglich bereits auf regionaler, lokaler Ebene hergestellt. Der zentrale Baustein dabei ist die Energiezelle. Sie kann Energie in Form von Wärme, Elektrizität oder Gas aufnehmen und/oder Elektrizität und Wärme (z. B. aus erneuerbaren Energien) selbst erzeugen, um so den eigenen Wärme- und Elektrizitätsbedarf zu decken. Energieüberschüsse können (elektrisch und/oder thermisch) gespeichert oder anderen Zellen im Nahbereich oder einem Energieversorger zur Verfügung gestellt werden. Ein Energiezellenmanagement kann in Koordination mit Nachbarzellen den Ausgleich von Erzeugung und Verbrauch über alle vorhandenen Energieformen organisieren.
Die Planung und der Betrieb zellularer Energiesysteme ist eine komplexe Aufgabe, da eine Vielzahl von dezentralen Energietechnologien, verschiedenste Ziele und auch Entscheidungsträger berück-sichtigt werden müssen.
Der vorliegende VDE Impuls beschreibt als ersten Schritt die Planung einer Energiezelle, welche mit Energieversorgern interagieren kann. Er ist der Auftakt einer Reihe weiterer Veröffentlichungen zur detaillierten Planung von Energiezellen und zellularen Energiesystemen.

Peer reviewed papers | 2021

Techno-economic optimization of islanded microgrids considering intra-hour variability

Mathiesen P, Stadler M, Kleissl J, Pecenak Z. Techno-economic optimization of islanded microgrids considering intra-hour variability. Applied Energy. 2021.304:117777.

External Link Details

The intra-hour intermittency of solar energy and demand introduce significant design challenges for microgrids. To avoid costly energy shortfalls and mitigate outage probability, islanded microgrids must be designed with sufficient distributed energy resources (DER) to meet demand and fulfill the energy and power balance. To avoid excessive runtime, current design tools typically only utilize hourly data. As such, the variable nature of solar and demand is often overlooked. Thus, DER designed based on hourly data may result in significant energy shortfalls when deployed in real-world conditions. This research introduces a new, fast method for optimizing DER investments and performing dispatch planning to consider intra-hour variability. A novel set of constraints which operate on intra-hour data are implemented in a mixed-integer-linear-program microgrid investment optimization. Variability is represented by the single worst-case intra-hour fluctuation. This allows for fast optimization times compared to other approaches tested. Applied to a residential microgrid case study with 5-minute intra-hour resolution, this new method is shown to maintain optimality within 2% and reduce runtime by 98.2% compared to full-scale-optimizations which consider every time-step explicitly. Applicable to a variety of technologies and demand types, this method provides a general framework for incorporating intra-hour variability into microgrid design.

Peer reviewed papers | 2020

Decentralized heating grid operation: A comparison of centralized and agent-based optimization

Lichtenegger K, Leitner A, Märzinger T, Mair C, Moser A, Wöss D, Schmidl C, Pröll T. Decentralized heating grid operation: A comparison of centralized and agent-based optimization. Sustainable Energy, Grids and Networks. 2020;2020(21).

External Link Details

Moving towards a sustainable heat supply calls for decentralized and smart heating grid solutions. One promising concept is the decentralized feed-in by consumers equipped with their own small production units (prosumers). Prosumers can provide an added value regarding security of supply, emission reduction and economic welfare, but in order to achieve this, in addition to advanced hydraulic control strategies also superordinate control strategies and appropriate market models become crucial.

In this article we study methods to find a global optimum for the local energy community or at least an acceptable approximation to it. In contrast to standard centralized control approaches, based either on expert rules or mixed integer linear optimization, we adopt an agent-based, decentralized approach that allows for incorporation of nonlinear phenomena. While studied here in small-scale systems, this approach is particularly attractive for larger systems, since with an increasing number of interacting units, the optimization problem becomes more complex and the computational effort for centralized approaches increases dramatically.

The agent-based optimization approach is compared to centralized optimization of the same prosumer-based setting as well as to a purely central setup. The comparison is based on the quality of the optimization solution, the computational effort and the scalability. For the comparison of these three approaches, three different scenarios have been set up and analysed for four seasons. In this analysis, no approach has emerged as clearly superior to the others; thus each of them is justified in certain situations.

Conference presentations and posters | 2020

Energy Communities – Four Austrian Pioneering Initiatives: Microgrid Lab – Wieselburg

Zellinger M, Aigenbauer S, Stadler M. Energy Communities – Four Austrian Pioneering Initiatives: Microgrid Lab – Wieselburg. Mission Innovation Austria Online. 13 May 2020.

Details
Other Publications | 2020

Microgrid Forschungslabor für 100 % dezentrale Energieversorgung

1. Zwischenbericht

Download PDF Details

Die Energiewende in Richtung dezentrale Energieversorgung und der stetige Ausbau
erneuerbarer Energieressourcen erfordert ein angepasstes Energienetz (Strom, Wärme und
Kälte) mit einem flexiblen, ausbau- und integrationsfähigen Regelungssystem, welches
bestehende EVU Systeme komplementiert, Netze entlastet und die Notwendigkeit des teuren
Netzausbaus verringert. Intelligente Mikro-Netze (Microgrids), ein Bereich der Strom- und
Energie-Netze (Smartgrids), erfüllen diese Anforderungen. Durch Microgrids werden lokale
Energiemärkte entstehen, welche lokale Ungleichgewichte von den Verbundnetzen
fernhalten und somit das Angebot und den Verbrauch bereits auf lokaler Ebene
ausbalancieren. Zusätzlich können die regionale Erzeugung und der Verbrauch von Strom
um die Wärme-, Kälte- und Gas-Seite ergänzt werden. Dies ergibt somit ein ganzheitliches
regionales Energiesystem, welches die gesamte Energieeffizienz erhöht und auch positive
Netzeffekte für den Energieversorger mit sich bringt. Microgrids liefern die Möglichkeit eine
100%ige dezentrale Energieversorgung zu erreichen.
Gegenwärtiger Forschungsbedarf und Gegenstand des Projektantrages
„Microgrid Lab 100%“ sind bestehende und neue wissenschaftliche Arbeiten und F&EErgebnisse
zu Microgrids (mathematische & physikalische Modellierung, modellbasierte
Steuerungsmethoden, Regelung mit künstlicher Intelligenz, Kommunikationsmethoden,
Datenerfassung und der Austausch zwischen Energieversorger, privaten Kunden und
Gebäudemanagementsystemen) in einem realen Umfeld zu evaluieren und auf
wissenschaftlicher Ebene weiter zu entwickeln. Da es derzeit keine vergleichbaren
Methoden, Verfahren oder Richtlinien gibt, ist ein hoher Innovationsgrad des beantragten
Projekts sichergestellt.
Projektinhalte und Projektziele sind die wissenschaftliche Planung und Inbetriebnahme des
Microgrid Forschungslabors, eine Nutzerbefragung, die Entwicklung von Testzyklen und ein
Monitoring, um mit den Ergebnissen die Optimierungsalgorithmen weiterzuentwickeln. Das
über das Projekt hinausgehende Ziel ist die Etablierung des Microgrid Forschungslabors für
verschiedene Wirtschaftszweige, um Planungs-, Steuerungs-, Integrations- und
Kommunikationskonzepte in Echtzeit zu entwickeln und für den Markt zu testen. Die
Involvierung von Industriepartner (u.a. COMET-Partner: EVN AG, Netz NÖ GmbH, Wien
Energie) bereits während der Projektlaufzeit und der Aufbau eines Kompetenznetzwerkes zu
Microgrids, mit Unterstützung des Bau.Energie.Umwelt Cluster und des
Technopolmanagement Wieselburg, tragen zu dieser Zielerreichung wesentlich bei.
Konkret umfasst das geplante Microgrid Forschungslabor das Umfeld des Technologie- und
Forschungszentrum (TFZ) Wieselburg-Land sowie das neue Feuerwehrhaus der
Stadtgemeinde Wieselburg und Gemeinde Wieselburg-Land. Zusätzlich wird die
Fachhochschule Wieselburg Daten (aus der Nutzerbefragung und einem eigenen
Monitoring) für die Weiterentwicklung der Optimierungsalgorithmen liefern.

Conference presentations and posters | 2020

Microgrid Lab 100 % - R&D project for decentralized energy supply with biomass and other Distributed energy Resources

Aigenbauer S. Microgrid Lab 100 % - R&D project for decentralized energy supply with biomass and other Distributed energy Resources. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Conference presentations and posters | 2020

Microgrid Lab 100% Testbed for the development of control algorithms for microgrids

Aigenbauer S, Microgrid Lab 100% Testbed for the development of control algorithms for microgrids. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details

Microgrids are local energy grids that (partly) cover their own energy demand. Decentralized renewable energy sources reduce energy costs and CO2 emissions in a microgrid. Various storage systems and strategies like load shift are employed to balance the volatile energy flows. Intelligent controllers improve the energy management of the micro and smart grids. BEST GmbH is the industry leader when it comes to biomass control systems in Austria. Thus, BEST GmbH is already combining this knowledge within the “OptEnGrid” (FFG 858815) and “Grundlagenforschung Smart- und Microgrid“ (K3-F-755/001-2017) research projects, which are based on the leading microgrid optimization tool DER-CAM from Lawrence Berkeley National Laboratory at the University of California. These two BEST GmbH basic research projects form the basis for new innovative microgrid controller concepts which will be implemented and tested in the presented Microgrid Research Lab in Wieselburg (project Microgrid Lab 100%). The Microgrid Research Lab will include the Technology- und Reseach Centre (tfz) Wieselburg-Land and the new firefighting department next to the tfz.

Conference presentations and posters | 2020

Microgrid Lab – R&D project for 100% decentralized energy supply with biomass and other Distributed Energy Resources (DER)

Aigenbauer S, Zellinger M, Stadler M. Microgrid Lab – R&D project for 100% decentralized energy supply with biomass and other Distributed Energy Resources (DER). 6th Central European Biomass Conference (poster). 2020.

Download PDF Details

Microgrids, a research topic within the smart grids area, build on close relationships between demand and supply and will create a 170 Mrd. € market potential in 2020[1]. These individual markets are characterized by different technologies in use. For example, biogas will play a key role in microgrids in Asia compared to Photovoltaics, Combined heat and Power (CHP), as well as storage technologies in North America. All these different technologies need to be coordinated and controlled. BIOENERGY2020+ GmbH is the industry leader when it comes to biomass control systems in Austria. Thus, BIOENERGY2020+ GmbH is already combining this knowledge within the OptEnGrid and “Grundlagenforschung Smart- und Microgrid“ (K3-F-755/001-2017) research projects, which are based on the leading microgrid optimization tool DER-CAM from Lawrence Berkeley National Laboratory at the University of California in Berkeley. These two BIOENERGY2020+ GmbH basic research projects constitute the basis for new innovative microgrid controller concepts and these new microgrid controller will be implemented and tested in the suggested Microgrid Research Lab in Wieselburg. The Microgrid Research Lab will include the Technology- und Reseach Centre (tfz) Wieselburg-Land and the new firefighting department next to the tfz.

 

 

Conference presentations and posters | 2020

Optimization based planning of energy systems

Zellinger M, Optimization based planning of energy systems. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Peer reviewed papers | 2020

Performance Comparison between Two Established Microgrid Planning MILP Methodologies Tested On 13 Microgrid Projects

Stadler M, Pecenak Z, Mathiesen P, Fahy K, Kleissl J. Performance Comparison between Two Established Microgrid Planning MILP Methodologies Tested On 13 Microgrid Projects. Energies.2020;13:446

External Link Details

Mixed Integer Linear Programming (MILP) optimization algorithms provide accurate and clear solutions for Microgrid and Distributed Energy Resources projects. Full-scale optimization approaches optimize all time-steps of data sets (e.g., 8760 time-step and higher resolutions), incurring extreme and unpredictable run-times, often prohibiting such approaches for effective Microgrid designs. To reduce run-times down-sampling approaches exist. Given that the literature evaluates the full-scale and down-sampling approaches only for limited numbers of case studies, there is a lack of a more comprehensive study involving multiple Microgrids. This paper closes this gap by comparing results and run-times of a full-scale 8760 h time-series MILP to a peak preserving day-type MILP for 13 real Microgrid projects. The day-type approach reduces the computational time between 85% and almost 100% (from 2 h computational time to less than 1 min). At the same time the day-type approach keeps the objective function (OF) differences below 1.5% for 77% of the Microgrids. The other cases show OF differences between 6% and 13%, which can be reduced to 1.5% or less by applying a two-stage hybrid approach that designs the Microgrid based on down-sampled data and then performs a full-scale dispatch algorithm. This two stage approach results in 20–99% run-time savings.

Peer reviewed papers | 2020

Robust design of microgrids using a hybrid minimum investment optimization

Pecenak ZK, Stadler M, Mathiesen P, Fahy K, Kleissl J. Robust design of microgrids using a hybrid minimum investment optimization. Applied Energy. 2020;276:115400.

External Link Details

Recently, researchers have begun to study hybrid approaches to Microgrid techno-economic planning, where a reduced model optimizes the DER selection and sizing is combined with a full model that optimizes operation and dispatch. Though providing significant computation time savings, these hybrid models are susceptible to infeasibilities, when the size of the DER is insufficient to meet the energy balance in the full model during macrogrid outages. In this work, a novel hybrid optimization framework is introduced, specifically designed for resilience to macrogrid outages. The framework solves the same optimization problem twice, where the second solution using full data is informed by the first solution using representative data to size and select DER. This framework includes a novel constraint on the state of charge for storage devices, which allows the representation of multiple repeated days of grid outage, despite a single 24-h profile being optimized in the representative model. Multiple approaches to the hybrid optimization are compared in terms of their computation time, optimality, and robustness against infeasibilities. Through a case study on three real Microgrid designs, we show that allowing optimizing the DER sizing in both stages of the hybrid design, dubbed minimum investment optimization (MIO), provides the greatest degree of optimality, guarantees robustness, and provides significant time savings over the benchmark optimization.

Peer reviewed papers | 2020

The impact of project financing in optimizing microgrid design

Pecenak ZK, Mathiesen P, Fahy K, Cannon C, Ayandele E, Kirk TJ, Stadler M. The impact of project financing in optimizing microgrid design. Journal of Renewable and Sustainable Energy. November 2020. 12:026187.

External Link Details

A disconnect between real world financing and technical modeling remains one of the largest barriers to widespread adoption of microgrid technologies. Simultaneously, the optimal design of a microgrid is influenced by financial as well as technical considerations. This paper articulates the interplay between financial and technical assumptions for the optimal design of microgrids and introduces a design approach in which two financing structures drive an efficient design process. This approach is demonstrated on a descriptive test case, using well accepted financial indicators to convey project success. The major outcome of this paper is to provide a framework which can be adopted by the industry to relieve one of the largest hurdles to widespread adoption, while introducing multiple debt financing models to the literature on microgrid design and optimization. An equally important outcome from the test case, we provide several points of intuition on the impact of varying financing terms on the optimal solution.

Peer reviewed papers | 2019

Efficient Multi-Year Economic Energy Planning in Microgrids

Pecenak Z, Stadler M, Fahy K, Efficient Multi-Year Economic Energy Planning in Microgrids. Applied Energy 2019;225.

External Link Details

With energy systems, the problem of economic planning is decisive in the design of a low carbon and resilient future grid. Although several tools to solve the problem already exist in literature and industry, most tools only consider a single “typical year” while providing investment decisions that last around a quarter of a century. In this paper, we introduce why such an approach is limited and derive two approaches to correct this. The first approach, the Forward-Looking model, assumes perfect knowledge and makes investment decisions based on the full planning horizon. The second novel approach, the Adaptive method, solves the optimization problem in single year iterations, making incremental investment decisions that are dependant on previous years, with only knowledge of the current year. Comparing the two approaches on a realistic microgrid, we find little difference in investment decisions (maximum 21% difference in total cost over 20 years), but large differences in optimization time (up to 12000% time difference). We close the paper by discussing implications of forecasting errors on the microgrid planning process, concluding that the Adaptive approach is a suitable choice.

Peer reviewed papers | 2019

Efficient Multi-Year Economic Energy Planning in Microgrids

Pecenak Zachary K, Stadler M,Fahy K. Efficient Multi-Year Economic Energy Planning in Microgrids. Applied Energy Journal by Elsevier, ISSN: 0306-2619

External Link Details

With energy systems, the problem of economic planning is decisive in the design of a low carbon and resilient future grid. Although several tools to solve the problem already exist in literature and industry, most tools only consider a single “typical year” while providing investment decisions that last around a quarter of a century. In this paper, we introduce why such an approach is limited and derive two approaches to correct this. The first approach, the Forward-Looking model, assumes perfect knowledge and makes investment decisions based on the full planning horizon. The second novel approach, the Adaptive method, solves the optimization problem in single year iterations, making incremental investment decisions that are dependant on previous years, with only knowledge of the current year. Comparing the two approaches on a realistic microgrid, we find little difference in investment decisions (maximum 21% difference in total cost over 20 years), but large differences in optimization time (up to 12000% time difference). We close the paper by discussing implications of forecasting errors on the microgrid planning process, concluding that the Adaptive approach is a suitable choice.

Other papers | 2019

Ganzheitliche Planung dezentraler Energiekonzepte durch mathematische Optimierung

Liedtke P, Stadler M, Zellinger M, Hengl F. Ganzheitliche Planung dezentraler Energiekonzepte durch mathematische Optimierung. e-nova Konferenz 2019.

External Link Download PDF Details

Kernthema dieses Beitrags ist die ganzheitliche Konzeption von Mikronetze, die sich auf die Reduzierung von Kosten und CO2-Emissionen konzentriert. Mikronetze, oder auch Microgrids, ermöglichen die koordinierte Energieerzeugung von dezentralen Energieressourcen, die Speicherungen der produzierten Energie und ein Lastmanagement zum Ausgleich von Wärme-, Kälte- und Elektrizitätsdienstleistungen. Mikronetze können vom breiteren Versorgungsnetz getrennt werden, können diverse Dienstleistungen erbringen und/oder selbst Energie erzeugen sowie in Überschusszeiten speichern und bei Bedarf wieder Kosten- oder Stabilitäts-orientiert freigeben.
Die mathematische Optimierung dient als unvoreingenommene Alternative für eine gesamtheitliche Planung von dezentralen Energietechnologien. Dieses Kriterium wird bei einer Kosten- oder CO2-Reduktion vor allem dann essentiell, wenn vielfältigen Kombinationen von Technologien und Kapazitäten möglich sind. Modernste Ansätze betrachten jedoch einen quasistatischen Aufbau unter Verwendung linearisierte Modelle und Mixed Integer Linear Optimization (MILP), wobei dynamische Effekte vernachlässigt werden. Unter Berücksichtigung von Lasten, geografischen, ökonomisch-ökologischen und tariflichen Daten sind mathematische Optimierungsalgorithmen in der Lage, verschiedene Anwendungsfälle zu beurteilen, wobei Effekte wie Vorwärmung, Sollwertänderungen oder kurzfristige Sonnenschwankungen unberücksichtigt bleiben. Dies bedeutet, dass die in quasistatischen Ansätzen verwendete Wärme- und Strombilanzen ungenau sein können (eventuell können physikalische Randbedingungen sogar verletzt werden, was zu suboptimalen Ergebnissen bei der Planung führen würde).
Die Notwendigkeit besteht quasistatische Optimierung mit einer weiteren Modellierungsart zu vergleichen und die Auswirkungen auf traditionelle quasistatische Ansätze, wie sie in DER-CAM oder ReOpt eingesetzt werden, aufzudecken. Um Abweichungen - bestehend aus dynamischen oder sogar Rebound Effekten - zu erkennen, werden mit TRNSYS Gebäude- und Anlagensimulationen für eine geplante Siedlungsanlage erstellt und ein Energiekonzept mit dem mathematischen Optimierungsprogramm OptEnGrid berechnet. Der Ansatz wird für vier Doppelhäuser und ein Mehrfamilienhaus getestet. Die Gebäude werden in TRNSYS simuliert und bieten thermische Lastdaten für den Referenzfall. Auch die Stromerzeugung mit PV-Modellen und der elektrische Verbrauch mit synthetischen Lastprofilen sind sowohl in der Optimierung als auch in der Simulation beteiligt. In der elektrischen Stromerzeugung zeigt die mathematische Optimierung bereits eine Abweichung von mehr als 5% auf Jahresbasis zur TRNSYS-Simulation. Ergebnisse im thermischen Energiebereich folgen nach weiterer Auswertung.

Peer reviewed papers | 2019

Input data reduction for microgrid sizing and energy cost modeling: Representative days and demand charges

Fahy K, Stadler M, Pecenak ZK, Kleissl J. Input data reduction for microgrid sizing and energy cost modeling: Representative days and demand charges. Journal of Renewable and Sustainable Energy. 2019.11:065301

External Link Details

Computational time in optimization models scales with the number of time steps. To save time, solver time resolution can be reduced and input data can be down-sampled into representative periods such as one or a few representative days per month. However, such data reduction can come at the expense of solution accuracy. In this work, the impact of reduction of input data is systematically isolated considering an optimization which solves an energy system using representative days. A new data reduction method aggregates annual hourly demand data into representative days which preserve demand peaks in the original profiles. The proposed data reduction approach is tested on a real energy system and real annual hourly demand data where the system is optimized to minimize total annual costs. Compared to the full-resolution optimization of the energy system, the total annual energy cost error is found to be equal or less than 0.22% when peaks in customer demand are preserved. Errors are significantly larger for reduction methods that do not preserve peak demand. Solar photovoltaic data reduction effects are also analyzed. This paper demonstrates a need for data reduction methods which consider demand peaks explicitly.

 

Other Publications | 2019

Optimization Based Design and Control of Distributed Energy Resources and Microgrids

Stalder M, Optimization Based Design and Control of Distributed Energy Resources and Microgrids. LetsCluster, Lighthouse Summit in the heart of Europe: Smart Energy Generation - Management - Optimization, Smart Home / Building, Interface to the Smart Grid, Microgrids, Electric Grid of the Future, Sector Linking, Graz, Österreich, 25 - 27 März 2019

Details

 

Peer reviewed papers | 2019

Planning and implementation of bankable microgrids

Stadler M, Nasle A. Planning and implementation of bankable microgrids. The Electricity Journal 2019. 32:24-29.

External Link Details

Currently, many Microgrid projects remain financially uncertain and not bankable for institutional investors due to major challenges in existing planning and design methods that require multiple, complex steps and software tools.

Existing techniques treat every Microgrid project as a unique system, resulting in expensive, non-standardized approaches and implementations which cannot be compared. That is, it is not possible to correlate the results from different planning methods performed by different project developers and/or engineering companies.

This very expensive individual process cannot guarantee financial revenue streams, cannot be reliably audited, impedes pooling of multiple Microgrid projects into a financial asset class, nor does it allow for wide-spread and attractive Microgrid and Distributed Energy Resource projects deployment.

Thus, a reliable, integrated, and streamlined process is needed that guides the Microgrid developer and engineer through conceptual design, engineering, detailed electrical design, implementation, and operation in a standardized and data driven approach, creating reliable results and financial indicators that can be audited and repeated by investors and financers.

This article describes the steps and methods involved in creating bankable Microgrids by relying on an integrated Microgrid planning software approach that unifies proven technologies and tested planning methods, researched and developed by the United States National Laboratory System as well as the US Department of Energy, to reduce design times.

Conference presentations and posters | 2019

Thermal Trouble: Challenges in Optimization and Evaluation of Thermal Energy Systems

Lichtenegger K, Unterberger V, Stadler M, Zellinger M, Carreras F, Moser A. Thermal Trouble: Challenges in Optimization and Evaluation of Thermal Energy Systems. IAPE 2019 : International Conference on Innovative Applied Energy (oral presentation). March 2019.

Details
Other Publications | 2018

100% ein Zukunftsprojekt; Innovatives Forschungslabor am Technopol Wieselburg

Aigenbauer S, Stadler M, Zellinger M. 100% ein Zukunftsprojekt; Innovatives Forschungslabor am Technopol Wieselburg. TGA Planung 2020. December 2019

Details
Other Publications | 2018

A flexible low cost PV/EV microgrid controller concept based on a Raspberry Pi

Stadler M. A flexible low cost PV/EV microgrid controller concept based on a Raspberry Pi. Working Paper, Center for Energy and innovative Technologies (CET) and Bioenergy 2020+ GmbH, June 2018.

Download PDF Details
Other Publications | 2018

Optimization of Heating, Electricits and Cooling Services in a Microgrid to Increase the Efficiency and Reliability

Lichtenegger K, Stadler M, Moser A, Zellinger M, Muschick D, Gölles M, Steinlechner M, Ayoub T, Gerardts B. Optimization of Heating, Electricits and Cooling Services in a Microgrid to Increase the Efficiency and Reliability. PoserGen Europe Wien, 20. Juni 2018

External Link Details

We briefly review the general concept and expected market potential of microgrids, then discuss the
optimization challenges associated with planning local cross-sectorial energy systems. A fair technology-
neutral approach to this optimization task leads to a hard problem, which has to be tackled with
advanced methods of mathematical optimization.
The power of this approach is illustrated in a case study, concerning the replacement of heating systems
in an alpine valley. In this case study we see both the potential for cost reduction and for the reduction
of CO2 emissions by an integrated planning approach

Reports | 2018

The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Lichtenegger K, Meixner K, Riepl R, Schipfer F, Zellinger M. The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. BMVIT, Schriftenreihe 25/2018.

External Link Details
Conference presentations and posters | 2018

The Green Parking Area – Utilization of urban parking areas for cultivation of algae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of algae. presentation at the WSED, Wels, Austria, 01. March 2018.

Details

The present study examines the possible use of urban and rural traffic areas for producing biomass. Many of those areas (for example, parking lots at cinemas and shopping centers) are only intensively used during certain times. Most of the time those areas remain empty.
At the same time a major problem for large-scale implementation of renewable energy is the massive land use resulting from limited energy density of solar radiation and, in case of biomass production, low efficiency for utilization of solar radiation by plants. Additionally, renewable energies are often criticized for the fact that they require areas, which could also be used for food and feed production.
Therefore, it is an attractive idea to use some of the traffic areas that are lost for the ecosystem anyway for biomass production. This approach is novel that no data have been available yet. The aim of this work was therefore to develop technical solutions, to quantify the technical potential for this type of biomass production and, subsequently, for energy supply, based on data on the area utilization, climatic data and known properties of microalgae.
The work deals with the question of the technical potential for this approach in Austria. This question is
answered by a survey of the area data in Austria, the elaboration of technical systems for a possible implementation, as well as by calculating the biomass potential, based on simulation results. The data have been collected, analyzed and evaluated in a comprehensive literature search. The potential analysis provides an overview of the distribution of traffic areas in Austria and the resulting biomass potential. Thus, a list of possible areas including biomass and energy quantities is available.

Conference presentations and posters | 2017

Microgrids and the Regional Balance of Supply and Demand in the Electricity and Heating Sector

Stadler M, Mair C, Zellinger M, Lichtenegger K, Haslinger W, Temper M, Moser A, Carlon E, Muschick D, Gölles M. Microgrids and the Regional Balance of Supply and Demand in the Electricity and Heating Sector. 20. Österreichischer Biomassetag, Windischgarsten, 14. - 15. November 2017.

External Link Details
Other Publications | 2017

Microgrids und dezentrale Energieerzeugung

Stadler M.,Carlon E., Gölles M., Haslinger W., Lichtenegger K., Mair C., Moser A., Muschick D., Zellinger M. Microgrids und dezentrale Energieerzeugung. Wasser Cluster Lunz/See Österreich, 21. September 2017.

Details
Other Publications | 2017

Mikro-Netze und die regionale Balance von Erzeugung und Verbrauch im Strom- und Wärmebereich

Stadler M, Mair C, Zellinger M, Lichtenegger K, Haslinger W, Temper M, Moser A, Carlon E, Muschick D, Gölles M. Mikro-Netze und die regionale Balance von Erzeugung und Verbrauch im Strom- und Wärmebereich. Impulsreferat 20. Österreichischer Biomassetag. Sektorkopplung & Flexibilisierung. Windischgarsten, Österreich. 14. November 2017.

Download PDF Details
Other papers | 2017

Startups in Kalifornien – Kollaborationsmodell im Energiebereich

Stadler M., Temper M., Haslinger W. Startups in Kalifornien – Kollaborationsmodell im Energiebereich. Impulsreferat Energy.Inc.Ubator, Start-ups als Katalysator in F&E für marktfähige Energiesystemlösungen. Co-Creation-Workshop. Bundesministerium für Verkehr, Innovation und Technologie. Österreich, 22. September 2017.

Details
Conference presentations and posters | 2017

The Green Parking Area – Utilization of urban parking areas for cultivation of microalgae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of microalgae. Presentation at the Eco City Summit 2017, Melbourne, Australia, 17. June 2017.

Details
Other Publications | 2017

The Green Parking Space – Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Schipfer F, Lichtenegger K, Zellinger M et al. The Green Parking Space – Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. Präsentation. First Vienna Vertical Farming Meetup 01.03.2017, Wien.

Download PDF Details

Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite