/src/Controller/ProjectscontentController.php (line 206)
object(App\Model\Entity\Projectscontent) {

	'id' => (int) 187,
	'project_id' => (int) 438,
	'longtitle_de' => 'Reactor optimization by membrane enhanced operation',
	'longtitle_en' => 'Reactor optimization by membrane enhanced operation',
	'content_de' => '<p style="text-align:left"><img alt="" src="/webroot/files/image/Projektseite/LOGO_ROMEO_white_background(1).jpg" style="float:left; height:93px; margin:10px; width:250px" /></p>

<p>Im EU-Projekt ROMEO wurde ein neues Reaktorkonzept zur homogenen Katalyse und gleichzeitiger Gasabscheidung durch Membranen entwickelt. Die Kombination dieser zwei Prozessschritte soll eine Prozessintensivierung von katalytischen Reaktionen erm&ouml;glichen und dadurch den Wirkungsgrad steigern. Dies verspricht eine &ouml;kologischere Nutzung, durch die Verminderung von Energie und Betriebsmitteln.</p>

<p>Um das ROMEO Konzept zu demonstrieren wurden zwei Reaktionen gew&auml;hlt, die gro&szlig;e Bedeutung in der chemischen Industrie haben: die Hydroformylierung und die Wasser-Gas-Shift Reaktion. Diese Reaktionen sollen in industrienaher Umgebung demonstriert werden. Dazu wurde eine Demonstrationsanlage zur Hydroformylierung verwendet. Dieser Prozess wird dazu benutzt, um Aldehyde aus Olefinen und Synthesegas herzustellen. Das Produkt der Hydroformylierung gilt als wichtiger Rohstoff in der chemischen Industrie. Um die Wasser-Gas-Shift Reaktion zu demonstrieren wurde eine Versuchsanlage gebaut, welche aus biomassebasierendem Synthesegas Wasserstoff herstellt.</p>

<p>Der ROMEO Reaktor besteht aus einem Katalysator und einer Membran, welche auf por&ouml;sen Tr&auml;germaterial aufgebracht sind. Dadurch k&ouml;nnen mehrere Prozesse in einem Reaktor ausgef&uuml;hrt werden, und die Effizienz wird erh&ouml;ht</p>

<p>Durch dieses neuartige hocheffiziente Reaktorkonzept konnten die Prozessemissionen um 16% und der Materialverbrauch um 11% gesenkt werden.</p>

<p style="text-align:left"><a href="http://romeo-h2020.eu/" target="_blank">http://romeo-h2020.eu/</a></p>

<p style="text-align:left">Highlights: <a href="http://www.romeo-h2020.eu/results/" target="_blank">http://www.romeo-h2020.eu/results/ </a></p>

<p style="text-align:left"><a href="https://www.youtube.com/watch?v=bA-Yeabv5bU&amp;list=PLvpwIjZTs-LjHDvRTqlyjfLeflXDak5er&amp;index=7" target="_blank">ROMEO Video</a></p>
',
	'content_en' => '<p style="text-align:left"><img alt="" src="/webroot/files/image/Projektseite/LOGO_ROMEO_white_background(1).jpg" style="float:left; height:93px; margin:10px; width:250px" />ROMEO is a European Research and Innovation Project funded by the European Commission. It is developing a new reactor concept using homogeneous catalysis and membrane technology to carry out chemical synthesis and downstream processing in a single step. Process intensification for catalytic-driven and eco-friendly reaction systems will be brought to a new level thanks to this two-in-one reactor. ROMEO&rsquo;s reactor will improve efficiency and long-term sustainability for the process industry that is highly dependent on energy, raw materials and water resources.</p>

<p style="text-align:left">Processes for bulk chemicals and bio-energy applications have been chosen to demonstrate the efficiency of ROMEO&rsquo;s technology in a near industrial environment. A demo plant for hydroformylation will be built. This facility will convert olefins and syngas to aldehydes. These molecules are used as precursors for plasticizer alcohols. A demo plant for water-gas shift reaction will be built. This demo plant will use CO or CO-containing syngas derived from biomass. If successful, the ROMEO researchers will have found a way of generating hydrogen from biogenic waste materials, for example wood waste</p>

<p style="text-align:left">ROMEO&rsquo;s reactor includes bundles of hollow-fiber tubes and a homogenous catalyst being fixed onto a membrane. Chemical synthesis and processing are carried out in a single step thanks to the membrane. In this &quot;two-in-one&quot; reactor, the product is continuously removed from the reaction mixture as soon as it is formed. This enhances the efficiency of the reactor.</p>

<p style="text-align:left">ROMEO intends to get detailed understanding of the processes involved in its new reactor, from nanoscale (catalyst phase, membrane, transport across and inside the membrane) to macro-scale (e.g. heat and</p>

<p style="text-align:left">mass flow, industrial process design). The new know-how will be used to develop a flexible reactor design method: a detailed understanding of the different components will allow the tool-box to be flexible and tailored for a wide range of applications.</p>

<p style="text-align:left"><a href="http://romeo-h2020.eu/" target="_blank">http://romeo-h2020.eu/</a></p>

<p style="text-align:left">Highlights: <a href="http://www.romeo-h2020.eu/results/" target="_blank">http://www.romeo-h2020.eu/results/ </a></p>

<p style="text-align:left"><a href="https://www.youtube.com/watch?v=bA-Yeabv5bU&amp;list=PLvpwIjZTs-LjHDvRTqlyjfLeflXDak5er&amp;index=7" target="_blank">ROMEO&#39;s new video</a></p>
',
	'image_1' => '/webroot/files/image/Projektseite/LOGO_ROMEO_white_background.jpg',
	'image_1_caption_de' => '',
	'image_1_caption_en' => '',
	'image_1_credits_de' => '',
	'image_1_credits_en' => '',
	'image_2' => '',
	'image_2_caption_de' => '',
	'image_2_caption_en' => '',
	'image_2_credits_de' => '',
	'image_2_credits_en' => '',
	'image_3' => '',
	'image_3_caption_de' => '',
	'image_3_caption_en' => '',
	'image_3_credits_de' => '',
	'image_3_credits_en' => '',
	'logos' => '<p><img alt="" src="/webroot/files/image/Projektseite/european-commission-logo_small_NL.jpg" style="float:left; height:106px; margin-left:10px; margin-right:10px; width:204px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_RWTH_bw_NL.jpg" style="float:left; height:54px; width:200px" />&nbsp;&nbsp; <img alt="" src="/webroot/files/image/Projektseite/Logo_LiqTech_bw_NL.jpg" style="height:70px; margin-left:10px; margin-right:10px; width:200px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_EMH_NL.jpg" style="height:105px; margin-left:10px; margin-right:10px; width:165px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_Linde_NL.jpg" style="height:67px; margin-left:10px; margin-right:10px; width:200px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_Csic_NL.jpg" style="height:79px; margin-left:10px; margin-right:10px; width:200px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_DTU_complet_NL.jpg" style="float:left; height:100px; margin-left:10px; margin-right:10px; width:200px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_FAU_NL.jpg" style="float:left; height:41px; margin-left:10px; margin-right:10px; width:200px" /><img alt="" src="/webroot/files/image/Projektseite/Logo_Evonik_NL.jpg" style="float:left; height:53px; margin-left:10px; margin-right:10px; width:200px" /></p>
',
	'finanzierung' => '<p><img alt="" src="/webroot/files/image/Projektseite/LOGO_ROMEO_white_background.jpg" /></p>

<p><em>The ROMEO project has received funding from the European Commission&#39;s Horizon 2020 research and innovation program under grant agreement n&deg;680395. </em></p>
',
	'active' => true,
	'created' => null,
	'modified' => null,
	'projektvolumen' => 'EUR 6 Mio. ',
	'project' => object(App\Model\Entity\Project) {

		'Nummer' => (int) 438,
		'Projektnummer' => 'N20028016',
		'Kurzbezeichnung' => 'ROMEO',
		'Kurzbezeichnung_en' => '',
		'Oeffentlich' => '1',
		'Projektname' => 'Romeo',
		'Projektname_en' => '',
		'Projektleitung' => (int) 173,
		'Start' => object(Cake\I18n\FrozenDate) {

			'time' => '2015-08-01 00:00:00.000000+00:00',
			'timezone' => 'UTC',
			'fixedNowTime' => false
		
		},
		'Ende' => object(Cake\I18n\FrozenDate) {

			'time' => '2019-09-15 00:00:00.000000+00:00',
			'timezone' => 'UTC',
			'fixedNowTime' => false
		
		},
		'publications' => [
			(int) 0 => object(App\Model\Entity\Publication) {

				'id' => (int) 1103,
				'titel' => 'Experimental demonstration and validation of hydrogen production based on gasification of lignocellulosic feedstock ',
				'subtitel' => '',
				'autor' => 'Loipersböck J, Luisser M, Müller S, Hofbauer H, Rauch R',
				'herausgeber' => '',
				'jahr' => (int) 2018,
				'datum_publikation' => '11 December 208',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 6,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Loipersböck J, Luisser M, Müller S, Hofbauer H, Rauch R. Experimental demonstration and validation of hydrogen production based on gasification of lignocellulosic feedstock. 2018.2:61-73.',
				'abstract' => '<p>The worldwide production of hydrogen in 2010 was estimated to be approximately 50 Mt/a, mostly based on fossil fuels. By using lignocellulosic feedstock, an environmentally friendly hydrogen production route can be established. A flow sheet simulation for a biomass based hydrogen production plant was published in a previous work. The plant layout consisted of a dual fluidized bed gasifier including a gas cooler and a dust filter. Subsequently, a water gas shift plant was installed to enhance the hydrogen yield and a biodiesel scrubber was used to remove tars and water from the syngas. CO2 was removed and the gas was compressed to separate hydrogen in a pressure swing adsorption. A steam reformer was used to reform the hydrocarbon-rich tail gas of the pressure swing adsorption and increase the hydrogen yield. Based on this work, a research facility was erected and the results were validated. These results were used to upscale the research plant to a 10 MW fuel feed scale. A validation of the system showed a chemical efficiency of the system of 60% and an overall efficiency of 55%, which indicates the high potential of this technology</p>
',
				'pdf_file' => '',
				'hyperlink' => ' https://doi.org/10.3390/chemengineering2040061',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2020-07-07 11:24:30.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2020-07-07 11:24:30.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 623,
					'project_id' => (int) 438,
					'publication_id' => (int) 1103,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2020-11-09 08:47:37.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2020-11-09 08:47:37.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			},
			(int) 1 => object(App\Model\Entity\Publication) {

				'id' => (int) 804,
				'titel' => 'Hydrogen production from biomass: The behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage',
				'subtitel' => '',
				'autor' => 'Loipersböck J, Lenzi M, Rauch R, Hofbauer H',
				'herausgeber' => '',
				'jahr' => (int) 2017,
				'datum_publikation' => '22 June 2017',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 6,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Loipersböck J, Lenzi M, Rauch R, Hofbauer H. Hydrogen production from biomass: The behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage. Korean Journal of Chemical Engineering. 22 June 2017; 1-6.',
				'abstract' => '<p>Most of the hydrogen produced is derived from fossil fuels. Bioenergy2020+ and TU Wien have been working on hydrogen production from biomass since 2009. A pilot plant for hydrogen production from lignocellulosic feedstock was installed onsite using a fluidized bed biomass gasifier in G&uuml;ssing, Austria. In this work, the behavior of impurities over the gas conditioning stage was investigated. Stable CO conversion and hydration of sulfur components could be observed. Ammonia, benzene, toluene, xylene (BTX) and sulfur reduction could be measured after the biodiesel scrubber. The results show the possibility of using a commercial Fe/Cr-based CO shift catalyst in impurity-rich gas applications. In addition to hydrogen production, the gas treatment setup seems to also be a promising method for adjusting the H<sub>2</sub> to CO ratio for synthesis gas applications.</p>
',
				'pdf_file' => '',
				'hyperlink' => 'https://link.springer.com/article/10.1007/s11814-017-0130-1',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2017-08-07 09:19:39.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2018-02-26 12:00:13.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 624,
					'project_id' => (int) 438,
					'publication_id' => (int) 804,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2020-11-09 08:47:37.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2020-11-09 08:47:37.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			}
		],
		'employee' => null,
		'project_area' => null,
		'display_name' => 'N20028016 -  ROMEO',
		'[new]' => false,
		'[accessible]' => [
			'*' => true,
			'Nummer' => false
		],
		'[dirty]' => [],
		'[original]' => [],
		'[virtual]' => [
			(int) 0 => 'project_area',
			(int) 1 => 'display_name'
		],
		'[hasErrors]' => false,
		'[errors]' => [],
		'[invalid]' => [],
		'[repository]' => 'Projects'
	
	},
	'[new]' => false,
	'[accessible]' => [
		'*' => true,
		'id' => false
	],
	'[dirty]' => [],
	'[original]' => [],
	'[virtual]' => [],
	'[hasErrors]' => false,
	'[errors]' => [],
	'[invalid]' => [],
	'[repository]' => 'Projectscontent'

}
Seite 92 / 99

Reactor optimization by membrane enhanced operation

Im EU-Projekt ROMEO wurde ein neues Reaktorkonzept zur homogenen Katalyse und gleichzeitiger Gasabscheidung durch Membranen entwickelt. Die Kombination dieser zwei Prozessschritte soll eine Prozessintensivierung von katalytischen Reaktionen ermöglichen und dadurch den Wirkungsgrad steigern. Dies verspricht eine ökologischere Nutzung, durch die Verminderung von Energie und Betriebsmitteln.

Um das ROMEO Konzept zu demonstrieren wurden zwei Reaktionen gewählt, die große Bedeutung in der chemischen Industrie haben: die Hydroformylierung und die Wasser-Gas-Shift Reaktion. Diese Reaktionen sollen in industrienaher Umgebung demonstriert werden. Dazu wurde eine Demonstrationsanlage zur Hydroformylierung verwendet. Dieser Prozess wird dazu benutzt, um Aldehyde aus Olefinen und Synthesegas herzustellen. Das Produkt der Hydroformylierung gilt als wichtiger Rohstoff in der chemischen Industrie. Um die Wasser-Gas-Shift Reaktion zu demonstrieren wurde eine Versuchsanlage gebaut, welche aus biomassebasierendem Synthesegas Wasserstoff herstellt.

Der ROMEO Reaktor besteht aus einem Katalysator und einer Membran, welche auf porösen Trägermaterial aufgebracht sind. Dadurch können mehrere Prozesse in einem Reaktor ausgeführt werden, und die Effizienz wird erhöht

Durch dieses neuartige hocheffiziente Reaktorkonzept konnten die Prozessemissionen um 16% und der Materialverbrauch um 11% gesenkt werden.

http://romeo-h2020.eu/

Highlights: http://www.romeo-h2020.eu/results/

ROMEO Video