Publications
Conference presentations and posters | 2014
Cost and energy efficient, environmentally friendly micro and small scale CHP
Haslinger W. Cost and energy efficient, environmentally friendly micro and small scale CHP, 5th AEBIOM European Bioenergy Conference 2014, 12th-14th of May 2014, Brussels, Belgium.
DetailsConference presentations and posters | 2014
Deployment scenarios of biomass-to-end-use chains for torrefied biomass
Schipfer F, Kranzl L, Bienert K, Ehrig R, Meyer M. Deployment scenarios of biomass-to-end-use chains for torrefied biomass, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.
DetailsConference presentations and posters | 2014
Deployment strategies for solid sustainable energy carriers from biomass by means of torrefaction
Schipfer F, Bienert K, Majer S, Ehrig R, Strasser C, Kranzl L, Deployment strategies for solid sustainable energy carriers from biomass by means of torrefaction, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany.
DetailsConference presentations and posters | 2014
Developing a simulation model for a mixed alcohol synthesis reactor and validation of experimental data in IPSEpro
Weber G, Di Giuliano A, Rauch R, Hofbauer H. Developing a simulation model for a mixed alcohol synthesis reactor and validation of experimental data in IPSEpro, 4th International Symposium on Gasification and its Applications (iSGA-4) 2014, 2nd-5th of September 2014, Vienna, Austria.
Details AbstractThe production of higher alcohols over a sulfidized molybdenum catalyst (MoS2) using a biomass-derived synthesis gas has been studied at Güssing for several years. The mixed alcohol (MA) pilot plant uses synthesis gas provided by the biomass-based combined heat and power plant (CHP) Güssing. Parameter variations were carried out wherein temperature, space velocity and gas composition were varied to evaluate the impact on CO conversion, product distribution and yield. The influence of side reactions to hydrocarbons was also a research objective. A sufficient amount of experimental data was obtained during these experiments. Evidence for the influence of various reaction parameters was found, but the mass balance could not be closed. A mathematical model of the MA synthesis reactor was developed using the stationary equation-orientated flow sheet simulation software IPSEpro. This publication gives an overview of modeling the MA reactor and condenser unit and testing the model with example calculations. Validated experimental results from 2012 parameter variation are shown and a comparison between experimental and validated quantities is carried out. A comparison with literature data shows that the observed tendencies are in good correlation to literature. The developed reactor model was enabling the possibility for carrying out a validation of the experimental data. IPSEpro uses the method of least-squares to obtain the approximate solution of the overall determined system. The established model was very close to the actual MA pilot plant. The model is very accurate about MA liquid product compositions and all measured flows.
Other papers | 2014
Development of a gas phase combustion model suitable for low and high turbulence conditions
Shiehnejadhesar A, Mehrabian R, Scharler R, Goldin GM, Obernberger I. Development of a gas phase combustion model suitable for low and high turbulence conditions. Fuel. 2014;126:177-87.
External Link Details AbstractA novel hybrid gas phase combustion model suitable for low as well as high turbulent combustion conditions is proposed. In particular, in the region above the fuel bed of small-scale biomass combustion plants, gas phase mixing is highly influenced by laminar and low turbulence zones. Here, the eddy break-up combustion models are not valid because they were originally developed for highly turbulent flows. Therefore, a CFD gas phase reaction model applicable over the whole Reynolds range from laminar to turbulent flows is developed. It is a hybrid Eddy Dissipation Concept/finite rate kinetics model which calculates the effective reaction rate from laminar finite rate kinetics and the turbulent reaction rate and weights them depending on the local turbulent Reynolds number of the flow. To validate the proposed model, comparisons are made with experimental data for a series of jet flames covering laminar, transitional, and turbulent flow conditions. The simulation results show that the prediction of flame can be improved with the proposed hybrid combustion model. © 2014 Elsevier Ltd. All rights reserved.
Conference presentations and posters | 2014
Development of a new Type test method for residential wood combusiton (RWC) appliances focusing on real life operation
Reichert G, Schmidl C, Aigenbauer S, Figl F, Moser W, Stressler H, Haslinger W, Development of a new Type test method for residential wood combusiton (RWC) appliances focusing on real life operation, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 373-380.
Details AbstractSince batch-wise operated biomass roomheaters are claimed to cause high amounts of gaseous and particulate emissions effective measures for a reduction of these emissions especially in real life operation have to be implemented in the future. For a verification of the real life operation performance as well as for a better product differentiation of biomass room heating appliances on the market advanced testing methods will be necessary in the future. Therefore a new test method for roomheaters called “Stove Testing 2020” (ST2020) was developed. According to the new test method the emission and efficiency performance of roomheaters is determined under operating conditions that are closer to real life. Compared to the existing EN 13240 standard also transient combustion phases are included. For a final evaluation of the test method the reproducibility as well as the real life relevance was analysed by a Round-Robin-Test as well as by field tests. The results showed sufficient reproducibility as well as a high real life relevance of the ST2020 test method. However, due to the strong impact of user behavior on emission and efficiency performance in real life operation further technological improvements of biomass roomheaters have to be strongly supported by effective measures to guarantee a correct operation.
Conference presentations and posters | 2014
Development of novel concepts for microalgae in the Austrian energy system
Sonnleitner A, Bacovsky D. Development of novel concepts for microalgae in the Austrian energy system, 4. Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
Details AbstractMicroalgae are seen worldwide as a new and promising feedstock for the energy supply chain.
Because of their high productivity and their ability to convert CO2 into biomass, microalgae are a
potential raw material for biorefineries, avoiding the food versus fuel conflict, and contributing to an
increased share of renewable energy. According to the current state of the art the utilization of algal
biomass for the production of fuel, energy and heat seems to be economically not competitive and the
life cycle assessment shows improvement possibilities in energy consumption (project
Algae&Energy:Austria). There are different options for utilization concepts which are technologically
and economically feasible. New concepts need to be developed and synergies with already existing
technologies need to be used.
Challenges along the value chain:
· Supply of water for cultivation
· Supply of nutrients for cultivation
· Energy consumption during cultivation
· Harvesting and processing of biomass
· Investment and operating costs
One possibility to cover the need of water and nutrients in a cost-effective way is the combination of
microalgae cultivation and waste water treatment. The cultivation of algae using different waste water
types common in Austria is technologically possible. In particular municipal waste water and effluents
from breweries and dairies are suitable as substrate. Due to the usage of this synergy the need for
fresh water and artificial fertilizer for algae cultivation decreases substantially and therefore operating
costs are reduced. Promising production concepts were developed and further research and
development needs were pointed out (project SAM).
After producing algal biomass the harvesting and processing steps for further utilization seem to be
difficult. In particular the high amount of water increases the energy expenditure in most of the
conversion pathways. Hydrothermal liquefaction seems to be promising to reduce the energy intensity
through two major factors: First, the conversion takes place in the liquid phase, and no energy
intensive drying of the algal biomass is needed. Second, the entire carbon which is fixed in the algae
can be used for energy production. The main product of hydrothermal liquefaction is a bio-oil, which
can be further processed in existing refinery processes into biogenic motor fuels, plastics and basic
chemicals (project microHTL).
In Austria many scientific research groups and companies are dealing with microalgae in the energy
system. These research and development efforts comprise different topics and approaches, like
different cultivation system designs (open pond, photobioreactor), biotechnological optimization of
microalgae species, the utilization of algal biomass in energetic and material pathways or the
combination of microalgae cultivation with existing technologies. It is of growing importance to
establish a network of Austrian experts and research groups for enhancement of cooperation and
research within the field of algae (project network biobased industry).
Through the optimization along the entire value chain with special regard to novel concepts of
cultivation, harvesting, processing, conversion and utilization, as well as an enhanced network of
Austrian experts and research groups, microalgae can serve as biogenic feedstock for the energy
Conference presentations and posters | 2014
Economic and ecological comparison of torrefaction-based biomass supply chains in Central Europe
Ehrig R, Kristöfel C, Rauch P, Strasser C, et al. Economic and ecological comparison of torrefaction-based biomass supply chains in Central Europe, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsPeer reviewed papers | 2014
Economics and price risks in international pellet supply chains
Ehrig R, Behrendt F, Wörgetter M, Strasser C. Economics and price risks in international pellet supply chains. International Pellet Supply Chains. ISBN 978-3-319-07015-5. 2014.
DetailsConference presentations and posters | 2014
Efficiency criteria for pellet heating systems
Schmidl C. Efficiency criteria for pellet heating systems, European Pellet Conference 2014, 26th-28th of February 2014, Wels, Austria.
DetailsPeer reviewed papers | 2014
Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements
Ortner M, Leitzinger K, Skupien S, Bochmann G, Fuchs W. Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements. Bioresour Technol. 2014;174:222-32.
External Link Details AbstractThree mono-digestion experiments treating slaughterhouse waste with high TKN concentration (~11. g/kg) were applied in lab-scale at mesophilic and psychrophilic conditions to study the impact of high ammonia concentrations and additives. Precipitation of sulphur by addition of ferrous chloride did not influence process behaviour, whereas supplementation of trace elements significantly improved process stability by reducing volatile fatty acid concentration towards zero.The limit of NH4-N concentration causing a rise of VFAs to 19,000mg/l and reduction of methane by 25% was found between 7.7 and 9.1g/kg which correspond to NH3 concentrations of 830-1060mg/l.Psychrophilic operation (25°C) lowered inhibitory NH3 concentration to 140mg/l, but process performance was stable only at low OLR of 0.4kgVS/m3d.Robust performance at highest possible NH4-N concentration (7.7g/kg), low VFA accumulation and satisfying methane yield of about 280Nm3/t COD was observed at OLR of 2.5kgVS/m3d at 37°C. © 2014 Elsevier Ltd.
Conference presentations and posters | 2014
Emissions from Biomass Boilers - The State of the Art
Schwabl M. Emissions from Biomass Boilers - The State of the Art, Wood Heating Conference, Newcastle 2015, 21st of November 2014, Newcastle, England.
DetailsConference presentations and posters | 2014
Empirical analysis of biomass and energy price volatility
Kristöfel C, Strasser C, Morawetz U, Schmid E. Empirical analysis of biomass and energy price volatility. Schriften der GEWISOLA. 2014;49:385-386. (peer reviewed) (visual presentation)
Details AbstractThe current debate on biomass price volatility mainly refers to increased market dynamics and integration as well as renewable energy policy intervention. Higher price volatility leads to additional costs that are often transmitted along the supply chain to the final consumers. We empirically analyze whether or not price volatility of woody biomass commodities has increased in recent years. Results indicate that the price volatility of some woody biomass
commodities has increased, but it is still lower than of fossil fuels.
Other papers | 2014
Experimental and modeling study of catalytic steam reforming of methane mixture with propylene in a packed bed reactor
Sadooghi P, Rauch R. Experimental and modeling study of catalytic steam reforming of methane mixture with propylene in a packed bed reactor. Int J Heat Mass Transfer. 2014;78:515-21.
External Link Details AbstractProducer gas from biomass gasification contains mainly hydrogen, carbon dioxide, carbon monoxide, methane and some other low molecular hydrocarbons like propylene. This paper reports mathematical simulation and experimental study of steam reforming of methane mixture with propylene in a packed bed reactor filled with nickel based catalysts. Due to the high heat input through the reformer tube wall and the endothermic reforming reactions, a two-dimensional pseudo-heterogeneous model that takes into account the diffusion reaction phenomena in gas phase as well as inside the catalyst particles has been used to represent temperature distribution and species concentration within the reactor. Steam reforming of propylene is faster and more selective than methane and it is shown that addition of propylene to the methane steam mixture reduces the conversion of methane. The obtained results play a key role in optimization and design of a commercial reactor. © 2014 Elsevier Ltd. All rights reserved.
Other Publications | 2014
Fermentation of biomass from micro algae
Gruber M, Zohar E, Jerney J, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Fermentation of biomass from micro algae, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsOther Publications | 2014
H2S and NH3 tolerance of acidophilic sulfur-oxidizing bacteria
Rachbauer L, Lorber G, Ortner M, Bochmann G. H2S and NH3 tolerance of acidophilic sulfur-oxidizing bacteria, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsConference presentations and posters | 2014
Hydroprocessing and Catalytic Cracking of Fischer-Tropsch Biowaxes to Biokerosene
Rauch R, Jovcic M, Aichernig C, Ililopoulou E, Heracleous E, Lapppas AA. Hydroprocessing and Catalytic Cracking of Fischer-Tropsch Biowaxes to Biokerosene, Processing Technologies for the Forest and Biobased Products Industries PTF BPI 2014, 24th-25th of September 2014, Kuchl, Austria.
DetailsConference presentations and posters | 2014
Impact of firebed temperature on PM1 formation in a small-scale biomass furnace
Gehrig M, Pelz S, Thorwarth H, Haslinger W, Jaeger D. Impact of firebed temperature on PM1 formation in a small-scale biomass furnace, International Aerosol Conference 2014, 31st of August-5th of September 2014, Busan, Korea.
DetailsConference presentations and posters | 2014
Improvement of the accuracy of short-term corrosion probe measurements by addition of a mass loss probe
Retschitzegger S, Brunner T, Obernberger I. Improvement of the accuracy of short-term corrosion probe measurements by addition of a mass loss probe, Proc. of the Conference Impacts of Fuel Quality on Power Production and Environment 2014, 26th-31st of October 2014, Snowbird, USA.
DetailsConference presentations and posters | 2014
Improving small scale combustion systems for better air quality
Schmidl C, Moser W, Reichert G. Improving small scale combustion systems for better air quality, TERMICA DA BIOMASSE E QUALITÀ DELL’ARIA 2014, 25th of June 2014, Udine, Italy.
DetailsOther papers | 2014
Integrating mitigation and adaptation into development: The case of Jatropha curcas in sub-Saharan Africa
Muys B, Norgrove L, Alamirew T, Birech R, Chirinian E, Delelegn Y, et al. Integrating mitigation and adaptation into development: The case of Jatropha curcas in sub-Saharan Africa. GCB Bioenergy. 2014;6(3):169-71.
External Link DetailsOther papers | 2014
Integration von Oxidationskatalysatoren in Holzöfen
Reichert G, Schmidl C. Integration von Oxidationskatalysatoren in Holzöfen, 13. Holzenergiesymposium 2014, 12th of September 2014, Zürich, Schweiz. pp 77-92. (peer reviewed)
Details AbstractBatch-wise operated wood stoves for room heating purposes are popular and widespread in Europe. Beside economic and ecological reasons they are also very important for reaching the European CO2 emission targets. However, since they contribute significantly to harmful gaseous as well as particulate emissions, they have to be optimized towards clear emission reduction in real life operation. Catalysts integrated in wood stoves can significantly contribute to reach this target. The results of this study showed an emission reduction potential of
integrated ceramic and metallic honeycomb catalysts of around 30 % to 99 %. Thereby the highest reduction potential was investigated for CO emissions (reduction rate 75 % to 99 %), followed by reductions of VOC emissions (reduction rate 40 % to 60 %) and reductions of PM emissions of around 30 % to 40 %. Long term tests and safety test series lead to the conclusion that integrated catalysts have to be cleaned regularly in order to prevent blocking and to guarantee optimal reduction performance.
Other Publications | 2014
Integration von Thermogeneratoren in einen Scheitholzofen zur Eigenstromversorgung der automatischen Luftklappenregelung
Mair, C. Integration von Thermogeneratoren in einen Scheitholzofen zur Eigenstromversorgung der automatischen Luftklappenregelung, Diploma Thesis, Technische Universität Wien, Vienna, Austria, 2014.
DetailsConference presentations and posters | 2014
Kinetic scheme and heat of reaction of biomass pyrolysis and torrefaction considering charring reactions.
Anca-Couce A, Mehrabian R, Scharler R, Obernberger I. Kinetic scheme and heat of reaction of biomass pyrolysis and torrefaction considering charring reactions, 20th International Analytical and Applied Pyrolysis Conference (PYRO2014), 19th-22nd of May 2014, Birmingham, United Kingdom.
DetailsOther papers | 2014
Kinetic scheme of biomass pyrolysis considering secondary charring reactions
Anca-Couce A, Mehrabian R, Scharler R, Obernberger I. Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Conversion and Management. 2014;87:687-96.
External Link Details AbstractA widely applicable kinetic scheme for pyrolysis is still missing. In this work an adaptation of the mechanistic scheme developed by Ranzi et al. (2008) for pyrolysis of small ash free biomass particles is proposed. The scheme is modified to include secondary char formation reactions, which are relevant for particles of a certain thickness, and sugar formation is avoided due to the catalytic effect of alkali metals in biomass. The predictions of the adapted scheme are compared to experimental data from the literature of pyrolysis in fixed beds of particles with a size of around 1 cm. It is shown that the adaptation improves the prediction of the final char yield and its CHO composition and also the yields of the main groups of volatiles, as carbonyls + alcohols, sugars and water vapor. © 2014 Elsevier Ltd. All rights reserved.
Other papers | 2014
Kinetic scheme to predict product composition of biomass torrefaction
Anca-Couce A, Mehrabian R, Scharler R, Obernberger I. Kinetic scheme to predict product composition of biomass torrefaction [Internet]; 2014 [cited 2015 Aug 12]. Available from: www.scopus.com.
Details AbstractA kinetic scheme for the prediction of product composition of torrefaction is presented in this work. The scheme is based on a pyrolysis scheme for fast pyrolysis of small ash free biomass particles and was adapted to consider the presence of secondary char formation reactions, the inhibition of sugar formation due to the catalytic effect of alkali metals in biomass, as well as the typical hemicellulose structure of hardwoods. The torrgas composition predicted by the model is compared to experimental data of torrefaction in a lab-scale packed bed reactor. It is shown that the adapted model is able to predict the yields of the main volatile groups, i.e., permanent gases, light and heavy condensable species and the yields of the several groups in which condensable species were classified based on their structure, i.e., carbonyls and alcohols, furans, phenolics as well as water vapour. Copyright © 2014,AIDIC Servizi S.r.l.
Conference presentations and posters | 2014
Low energy houses heated by biomass boilers: optimization of the heating system control strategy by means of dynamic simulation
Carlon E, Schwarz M, Schmidl C, Baratieri M, Gasparella A, Haslinger W. Low energy houses heated by biomass boilers: optimization of the heating system control strategy by means of dynamic simulation, 3rd International High Performance Buildings Conference at Purdue 2014, 14th-17th of July 2014, Purdue, USA. (peer reviewed)
DetailsOther Publications | 2014
Microalgae as source of biogas: Anaerobic digestion of un- and pre-treated biomass
Gruber M, Zohar E, Jerney J, Nussbaumer M, Ludwig I, Hieger C, Bromberger P, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Microalgae as source of biogas: Anaerobic digestion of un- and pre-treated biomass, Algae Networking Event 2014, 11th of September 2014, Dürnrohr, Austria. (oral presentation)
DetailsOther papers | 2014
Model based control of a small-scale biomass boiler
Gölles M, Reiter S, Brunner T, Dourdoumas N, Obernberger I. Model based control of a small-scale biomass boiler. Control Engineering Practice. 2014;22(1):94-102. https://doi.org/10.1016/j.conengprac.2013.09.012
External Link Details AbstractBecause of increased efforts to reduce CO2 emissions a significant step in the development of small-scale (residential) biomass boilers for space heating has been achieved in recent years. Currently, the full potential for low-emission operation at high efficiencies, which is in principle possible due to optimized furnace geometries as well as combustion air staging strategies, cannot be exploited since there is still the need to enhance the controllers applied. For this reason, a model based control strategy for small-scale biomass boilers was developed and successfully implemented in a commercially available system. Thereby, appropriate mathematical models were developed for all relevant parts of the furnace and connected to an overall model subsequently used for the control unit design. The resulting controller is based on the input–output linearization and the state variables are estimated by an extended Kalman filter. Finally, the new control was implemented at a commercially available small-scale biomass boiler and the experimental verification showed a significant improvement of the operating behaviour in comparison to the conventional control.
Other papers | 2014
Model based control of the secondary air massflow of biomass furnaces [Modellbasierte Regelung des Sekundärluftmassenstromes bei Biomasse-Feuerungsanlagen]
Schörghuber C, Gölles M, Dourdoumas N, Obernberger I. Model based control of the secondary air massflow of biomass furnaces. At-Automatisierungstechnik. 2014;62(7):487-99.
External Link Details AbstractTo influence the combustion process of modern biomass furnaces specifically the combustion-controller determines the necessary mass flows. The gaseous mass flows can be adjusted by fans and flaps. To ensure the desired overall performance of the furnace the mass flows need to be set by inner control loops respectively. Within the work described in this paper a model based approach for the control design of the inner control loop is presented exemplarily for the secondary air supply. Thereby a flatness-based feedforward control will be designed by means of an appropriate model. © 2014 Oldenbourg Wissenschaftsverlag GmbH.
Conference presentations and posters | 2014
Model based optimization of a combined biomass-solar thermal system
Stift F, Hartl M, Ferhatbegović T, Aigenbauer S, Simetzberger A. Model based optimization of a combined biomass-solar thermal system. Energy Procedia. 2014;48:681-688. (peer reviewed)
DetailsOther Publications | 2014
Modellierung und Regelung eines Pufferspeichers in Kombination mit einer Biomassefeuerung
Hemmer, J. Modellierung und Regelung eines Pufferspeichers in Kombination mit einer Biomassefeuerung, Master Thesis, Technische Universität Graz, Graz, Austria, 2014.
Details AbstractDie vorliegende Arbeit widmet sich der Herleitung mathematischer Simulationsmodelle eines Pufferspeichers, eines Solarkollektors sowie eines Plattenwärmeübertragers. Dabei wird das Simulationsmodell des Pufferspeichers anhand eines am Markt verfügbaren Pufferspeichers entwickelt. Die mathematischen Beschreibungen der Simulationsmodelle basieren auf einer partiellen Differentialgleichung zur Beschreibung der Wärmeübertragung in einem durchströmten zylindrischen Rohr. Nach dem Erhalt der mathematischen Modelle werden diese mit einem impliziten Lösungsverfahren numerisch gelöst. Anschließend werden die experimentell zu ermittelnden Parameter des Pufferspeichermodells anhand gezielt durchgeführter Versuche bestimmt. Nach dem Ermitteln der Parameter wird das Simulationsmodell des Pufferspeichers mit einem weiteren Versuch experimentell verifiziert. Schlussendlich bildet das mathematische Modell des Pufferspeichers den untersuchten Pufferspeicher sehr zufriedenstellend ab, womit ein Simulationsmodell vorliegt, das gezielte Untersuchungen ohne aufwändige Versuche ermöglicht. Abschließend wird eine Regelung für die Wärmeübertragung aus dem Solarkollektor in den Pufferspeicher entwickelt. Dabei werden zwei in der Praxis übliche Verfahren untersucht. Bei der ersten Variante erfolgt die Übertragung der Wärme in den Pufferspeicher über ein im Pufferspeicher integriertes Solarregister. Bei der zweiten Variante erfolgt die Übertragung der Wärme über einen Plattenwärmeübertrager vom Wasser-Frostschutzgemisch auf Wasser, welches dann direkt in den Pufferspeicher eingespeist wird. Als Reglerstruktur wird in beiden Fällen ein Standard-Regelkreis mit einer statischen Vorsteuerung verwendet. Anhand von Simulationsstudien werden zunächst die Parameter des PI-Reglers festgelegt und in weiterer Folge die mit der jeweiligen Variante resultierenden Temperaturverläufe des Wassers im Pufferspeicher untersucht und gegenübergestellt. Dabei stellt sich heraus, dass die Temperatur des Wassers im Pufferspeicher, bei gleich bleibender Strahlungsstromdichte der Solarstrahlung Igauf den Solarkollektor, die gewünschte Solltemperatur bei Wärmeübertragung mittels Plattenwärmeübertrager schneller erreicht, als bei Wärmeübertragung durch das Solarregister. Darüber hinaus ermöglicht die Verwendung des Plattenwärmeübertragers eine Schichtung der Temperatur des Wassers im Pufferspeicher und somit eine Speicherung der Wärme auf einen höheren Temperaturniveau.
Peer reviewed papers | 2014
Multi-physics modelling of packed bed biomass combustion
Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I. Multi-physics modelling of packed bed biomass combustion. Fuel. 2014;122:164-78.
External Link Details AbstractA transient 3D model for two main zones, namely the fuel bed and the freeboard, of biomass packed bed combustion systems was developed. It integrates the models for the biomass conversion sub-processes and solves the governing equations for the gas and solid phase and their interactions. The intra-particle gradients are included by considering the biomass particles as thermally thick particles. The shrinkage of the packed bed and the variations of the bed porosity due to the uneven consumption of the fuel are taken into account. Detailed kinetic mechanisms are used for the simulation of homogeneous gas phase reactions. To verify the model and to increase the understanding of packed bed combustion, laboratory-scale fixed-bed batch experiments have been performed in a reactor with 9.5 cm diameter and 10 cm length. The model performance was extensively validated with gas phase measurements (CO, CO2, CH4, H2, H2O and O2) above the fuel bed, temperatures at different heights in the bed and in the freeboard, and the propagation rate of reaction front. The simulation results are in a good agreement with the measured values. © 2014 Elsevier Ltd. All rights reserved.
Conference presentations and posters | 2014
Off-gassing – Safety issues related with harmful emissions from wood pellets
Emhofer W. Second International Workshop on Pellet Safety “Off-gassing – Safety issues related with harmful emissions from wood pellets”, 5th of May, Fügen, Austria, 2014.
DetailsConference presentations and posters | 2014
Off-gassing –Safety issues related with emissions from wood pellets along the pellet supply chain
Emhofer W, et al. Pellets Workshop ” Off-gassing –Safety issues related with emissions from wood pellets along the pellet supply chain” (held held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.
DetailsConference presentations and posters | 2014
Optimising the heating system of a low energy house
Rimoldi M, Carlon E. Optimising the heating system of a low energy house, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.
DetailsOther Publications | 2014
Pellet off-gassing during storage: The impact of storage conditions and type of source material
Meier, F. Pellet off-gassing during storage: The impact of storage conditions and type of source material, Master Thesis, University of Natural Resources and Life Sciences Vienna, Vienna, Austria, 2014.
DetailsConference presentations and posters | 2014
Performances of a non-sulfided CoMo/SiO2-Al2O3 hydrocracking catalyst used in BtL Technology
Sauciuc A, Ganea R, Dumitrescu L, Rauch R, Hofbauer H. Performances of a non-sulfided CoMo/SiO2-Al2O3 hydrocracking catalyst used in BtL Technology, 4th International Symposium on Gasification and its Applications (iSGA-4) 2014, 2nd-5th of September 2014, Vienna, Austria.
DetailsConference presentations and posters | 2014
Price cointegration in the Austrian wood fuel market,
Kristöfel C, Morawetz UB, Schmid E, Strasser C. Price cointegration in the Austrian wood fuel market, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 1330-1335.
Details AbstractThe wood fuel market is connected to the forestbased industry in various ways: the sawmill by products such as sawdust and wood chips are usually used as raw material in the panel, pulp and paper industry and are increasingly pelletized to supply the energy commodity market. Hence, the question arises whether or not prices of these woody biomass commodities are integrated. Threshold cointegration and asymmetric error correction models are used to analyze the price dynamics between roundwood, wood pellets and sawmill by products. Results indicate that a statistical significant price transmission between sawmill byproducts and wood pellets, but wood pellet and roundwood prices are not integrated. The price transmission between wood pellets and sawdust as well as wood chips is asymmetric. The Granger Causality test reveals that the prices of sawdust and wood chips depend on the price of wood pellets.
Conference presentations and posters | 2014
Promotion of bioenergy initiatives in Centru Region, Romania
Kristöfel C, Ehrig R, Strasser C. Promotion of bioenergy initiatives in Centru Region Romania, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsConference presentations and posters | 2014
Promotion of successful bioenergy initiatives in Eastern Europe
Kristöfel C. Promotion of successful bioenergy initiatives in Eastern Europe, Word Sustainable Energy Days 2014, 26th-28th of February 2014, Wels, Austria. (visual presentation)
DetailsOther papers | 2014
Quantitation of aging products formed in biodiesel during the Rancimat accelerated oxidation test
Flitsch S, Neu PM, Schober S, Kienzl N, Ullmann J, Mittelbach M. Quantitation of aging products formed in biodiesel during the Rancimat accelerated oxidation test. Energy and Fuels. 2014;28(9):5849-56.
External Link Details AbstractBiodiesel (rapeseed oil methyl ester) was aged in a Rancimat device at a temperature of 110°C and an air flow of 10 L/h. Time-resolved analyses applying gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and ion-exchange chromatography on the formation of aging products were performed. Formic and acetic acid, fatty acids with chain lengths from 5 to 18 carbon atoms, fatty acid methyl esters, and epoxides were quantified. After 12 h of aging, the concentrations of formic and acetic acid were 5600 ± 80 and 1360 ± 80 mg/kg, respectively. Fatty acid concentrations were in the range of <18-4200 mg/kg after 18 h of aging. Linoleic acid methyl ester and linolenic acid methyl ester (19 and 9.1 mass % of the non-aged fuel) were shown to be fully decomposed after 24 and 18 h of aging, respectively. After 51 h of aging, the concentration of oleic acid methyl ester (63 mass % of the non-aged fuel) decreased to 2.2 mass % and trans-epoxy stearic acid methyl ester and cis-epoxy stearic acid methyl ester reached concetrations of 5.9 and 0.7 mass %, respectively. The fuel composition shows only minor changes in early stages of aging, and a strong timely correlation of the formation of aging products with the end of the induction period of fuel was observed. © 2014 American Chemical Society.
Peer reviewed papers | 2014
Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp
Stoyanova E, Forsthuber B, Pohn S, Schwarz C, Fuchs W, Bochmann G. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. Biodegradation. 2014;25(2):277-89.
External Link Details AbstractAnaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m3 d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system. © 2013 Springer Science+Business Media Dordrecht.
Conference presentations and posters | 2014
Residential Wood Combustion (RWC) -Investigation of user behavior and operating conditions regarding stoves and their impact on emissions and efficiency
Reichert G, Schmidl C, Haslinger W, Moser W, Aigenbauer S, Figl F, Wöhler M. Residential Wood Combustion (RWC) -Investigation of user behavior and operating conditions regarding stoves and their impact on emissions and efficiency, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
Details Abstract
Conference presentations and posters | 2014
Rolle und Potenzial der Bioenergie für die Wärmeversorgung der Zukunft
Haslinger W. Rolle und Potenzial der Bioenergie für die Wärmeversorgung der Zukunft, Technologiegespräche Alpbach 2014, 13th-29th of August 2014, Alpbach, Austria.
DetailsOther Publications | 2014
Scenedesmus obliquus as Source for Biogas: Anaerobic Digestion of Untreated and Pre-treated Biomass.
Gruber M, Zohar E, Jerney J, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Scenedesmus obliquus as Source for Biogas: Anaerobic Digestion of Untreated and Pre-treated Biomass, 15. Tagung der Sektion Phykologie der DGB 2014, 23rd-26th of February 2014, Stralsund, Germany.
DetailsPeer reviewed papers | 2014
Seeing about soil — management lessons from a simple model for renewable resources
Lichtenegger K, Schappacher W. Seeing about soil — management lessons from a simple model for renewable resources. International Journal of Modern Physics C. 2014;25(8).
External Link Details AbstractEmploying an effective cellular automata model, we investigate and analyze the build-up and erosion of soil. Depending on the strategy employed for handling agricultural production, in many cases we find a critical dependence on the prescribed production target, with a sharp transition between stable production and complete breakdown of the system.
Strategies which are particularly well-suited for mimicking real-world management approaches can produce almost cyclic behavior, which can also either lead to sustainable production or to breakdown.
While designed to describe the dynamics of soil evolution, this model is quite general and may also be useful as a model for other renewable resources and may even be employed in other disciplines like psychology.
Conference presentations and posters | 2014
Sicherheit bei der Lagerung von Pellets
Emhofer W. Sicherheit bei der Lagerung von Pellets, Highlights der Energieforschung VIII - Erneuerbares Heizen und Kühlen 2014, 11th of July 2014, Vienna, Austria
DetailsConference presentations and posters | 2014
Status fortschrittlicher Biokraftstoffe
Bacovsky D. Status fortschrittlicher Biokraftstoffe, 7. EID Kraftstoff-Forum 2014, 18th-19th of March 2014, Hamburg, Germany
DetailsOther papers | 2014
Strategy for the application of novel characterization methods for biomass fuels: Case study of straw
Obernberger I. Strategy for the application of novel characterization methods for biomass fuels: Case study of straw. Energy and Fuels. 2014;28(2):1041-52.
External Link Details AbstractBecause of an increasing interest in the utilization of new and in terms of combustion-related properties rather unknown biomass fuels in heat and power production, advanced fuel characterization tools are gaining rising interest. Currently, ongoing research and development (R&D) focuses on a better and more precise description of the combustion properties of specific biomass fuels by applying new/advanced analysis methods and modeling tools. These novel characterization methods cover combustion tests in specially designed lab reactors, special fuel indices for biomass fuels, and the dedicated application of high-temperature equilibrium calculations. In this paper, a strategy is presented how the information gained from different advanced fuel characterization methods can be combined to characterize a fuel regarding its combustion behavior in a novel way. By means of this strategy, relevant qualitative and quantitative information regarding the ash-melting behavior, aerosol, SOx, HCl, and NOx emissions to be expected, and high-temperature corrosion risks can be gained. In addition, the approach can also be used for the evaluation of additives and fuel blending as measures to improve specific combustion properties. The results show that a much better and clearer picture about the combustion properties of a specific biomass fuel can be provided than by conventional approaches (such as wet chemical analysis or other standardized methods). The results can be used for the preliminary design of plants as well as for evaluation of the applicability of a specific technology for a certain biomass fuel or fuel spectrum. Moreover, they can be applied in combination with computational fluid dynamics (CFD) simulations for the detailed design and evaluation of furnaces and boilers. © 2014 American Chemical Society.
Conference presentations and posters | 2014
Synergies of Wastewater and Microalgae Cultivation
Sonnleitner A, Bacovsky D, Bochmann G, Drosg B, Schagerl M. Synergies of Wastewater and Microalgae Cultivation, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.
Details AbstractCurrent international research results identify microalgae as a new and promising feedstock for the global energy supply chain. A novel concept to reduce costs and cover the need of water and nutrients is the combination of wastewater treatment and microalgae cultivation. In Austria in particular brewery and dairy effluents as well as municipal wastewater would be suitable for algae cultivation. Cultivation systems practical for the use of wastewater are High Rate Algal Ponds (open system, suspended culture), Algal Turf Scrubbers (open system, immobilized culture) and Photobioreactors (closed systems, suspended culture). The cultivation of microalgae in general and the special case of wastewater as nutrient source face a variety of challenges either concerning the accumulation of microalgal cells in wastewater (upstream process) or their removal and processing (downstream process). Taking a look at the whole production chain shows that for effluents of breweries, dairies
and smale-scale municipal wastewater no feasible concept for the combination of microalgae cultivation and wastewater treatment can be designed. A promising production concept for large-scale municipal wastewater treatment plants are HRAPs or biofilm production in ATS systems for energetic and material pathways. Various R&D challenges are to overcome to lead to an optimization and further development of technologies for combined wastewater treatment and microalgae cultivation in Austria.
Peer reviewed papers | 2014
Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers
Hebenstreit B, Schnetzinger R, Ohnmacht R, Höftberger E, Lundgren J, Haslinger W, et al. Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers. Biomass Bioenergy. 2014;71:12-22.
External Link Details AbstractAn active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10kW and 100kW) and two wood chip boilers (100kW and 10MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3-21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3-27.9kg MWh-1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2-12 years for the 10MW wood chip test case. © 2014 Elsevier Ltd.
Other papers | 2014
The Biomass Technology Roadmap of the RHC-Platform: Priorities for high efficient large-scale CHP units
Grammelis P, Goodwin N, Alakangas E, Haslinger W, Karampinis E. The Biomass Technology Roadmap of the RHC-Platform: Priorities for high efficient large-scale CHP units. VGB PowerTech. 2014;6:74-79.
Details AbstractDie europäische Technologie-Plattform für Heizen und Kühlen mit erneuerbaren Energien (RHC-Plattform, www.rhc-platform.org) fördert die Forschung und Entwicklung bei der Wärme- und Kälteproduktion aus erneuerbaren Energiequellen in der EU. Die verschiedenen Endanwendungen (Strom und/oder Bereitstellung von Wärme, Kraftstoff) setzen eine Verdoppelung der Biomassenutzung voraus, um die 20-20-20-Ziele der EU zu erreichen. Neue Ressourcen müssen erschlossen, mobilisiert und der Wirkungsgrad der Umwandlungsprozesse gesteigert werden. In Biomasse-Heizkraftwerken sowie Heizwerken werden derzeit mehr als ein Drittel des gesamten Biomasseaufkommens eingesetzt. Dies führt zu neuen, gemeinsamen Herausforderungen für den Strom- und Wärmesektor.
Das Biomasse-Panel der RHC-Plattform hat Schwerpunkte für Forschung und Entwicklung definiert, um bestimmte Kennzahlen für Biomassewertschöpfungsketten zu erreichen. Der vorliegende Beitrag stellt die Prioritäten für die Bestandteile der Wertschöpfungsketten vor, die relevant für den Strombereich sind:
a) nachhaltige und kosten-effiziente Biomasseversorgungsketten, b) thermisch behandelte Biomasse-Brennstoffe und c) hoch-effiziente KWK-Anlagen.
Herausforderungen für den Anlagenbetrieb sind Brennstoffflexibilität, Wirkungsgraderhöhung über den vollen Lastbereich, Betrieb mit variablen Brennstoffen und Qualitäten bei variablen Lastzuständen, höhere Betriebsparameter für Dampf und andere Wärmeträger, höhere Anlagenverfügbarkeit, Reduktion von unerwünschten gas- und partikelförmigen Emissionen und schließlich die Ascheverwertung.
Conference presentations and posters | 2014
Thermal simulation of a pellet boiler and a heat storage tank for future control strategies
Schnetzinger R, Musumarra I, Hebenstreit B, Lichtenegger K, Schwarz M, Höftberger E. Thermal simulation of a pellet boiler and a heat storage tank for future control strategies, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsOther Publications | 2014
Thermo-chemical pre-treatment of brewers' spent grains
Gorter S, Rachbauer L, Scheidl S, Gabauer W, Ortner M, Bochmann G. Thermo-chemical pre-treatment of brewers' spent grains, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsConference presentations and posters | 2014
Torrefied pellets – influence of torrefaction on pellet characteristics and combustion behaviour
Pointner C, Schmutzer-Roseneder I, Feldmeier S, Kristöfel C, Ehrig R, Schwabl M, Strasser C, Wörgetter M. Torrefied pellets – influence of torrefaction on pellet characteristics and combustion behavior, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
DetailsConference presentations and posters | 2014
Towards a Stochastic Cellular Automata Model of Log Wood Combustion
Lichtenegger K, Schappacher W, Hebenstreit B, Schmidl C, Höftberger E. Towards a Stochastic Cellular Automata Model of Log Wood Combustion. Journal of Physics: Conference Series. 2014:490:102015. (peer reviewed)
Details AbstractDescribing the combustion of log wood and others solid fuels with complex geometry, considerable water content and often heterogenous struture is a nontrivial task. Stochastic Cellular Automata models offer a promising approach for modelling such processes. Combustion models of this type exhibit several similarities to the well-known forest fire models, but there are also significant differences between those two types of models. These differences call for a detailed analysis and the development of supplementary modeling approaches. In this
article we define a qualitative two-dimensional model of burning log wood, discuss the most important differences to classical forest fire models and present some preliminary results.
Conference presentations and posters | 2014
Transport Biofuels in Europe - A Vision for 2030
Wörgetter M. Transport Biofuels in Europe - A Vision for 2030, Fuels of the Future 2014, 20th-21st of January 2014, Berlin, Germany.
DetailsOther papers | 2014
Wood Gas Processing To Generate Pure Hydrogen Suitable for PEM Fuel Cells
Fail S, Diaz N, Benedikt F, Kraussler M, Hinteregger J, Bosch K, et al. Wood gas processing to generate pure hydrogen suitable for PEM fuel cells. ACS Sustainable Chemistry and Engineering. 2014;2(12):2690-8.
External Link Details AbstractA test campaign was carried out to generate renewable hydrogen based on wood gas derived from the commercial biomass steam gasification plant in Oberwart, Austria. The implemented process consisted of four operation units: (I) catalyzed water-gas shift (WGS) reaction, (II) gas drying and cleaning in a wet scrubber, (III) hydrogen purification by pressure swing adsorption, and (IV) use of the generated biohydrogen (BioH2) in a proton exchange membrane (PEM) fuel cell. For almost 250 h, a reliable and continuous operation was achieved. A total of 560 (Ln dry basis (db))/h of wood gas were extracted to produce 280 (Ln db)/h of BioH2 with a purity of 99.97 vol %db. The catalyzed WGS reaction enabled a hydrogen recovery of 128% (nBioH2)/(nH2,wood gas) over the whole process chain. An extensive chemical analysis of the main gas components and trace components (sulfur, CxHy, and ammonia) was carried out. No PEM fuel cell poisons were measured in the generated BioH2. The only detectable impurities in the product were 0.02 vol %db of O2 and 0.01 vol %db of N2. © 2014 American Chemical Society.
Other papers | 2013
A new innovative CFD-based optimisation method for biomass combustion plants
Shiehnejadhesar A, Schulze K, Scharler R, Obernberger I. A new innovative CFD-based optimisation method for biomass combustion plants. Biomass Bioenergy. 2013;53:48-53.
External Link Details AbstractIn this paper, the work on the development and test of a basic design tool for the automatic performance of parameter studies for the optimisation of biomass combustion plants is presented. The model consists of parameterisation and optimisation routines linked with an in-house developed empirical packed bed combustion model as well as gas phase CFD models especially adapted for biomass grate furnaces. To test and verify the routine developed, it has been applied to the optimisation of a 180 kWth pilot-scale grate furnace. The main focus was on the minimisation of CO emissions and the pressure loss by changing the diameter and angle of the secondary air nozzles. The simulation results show that the time of the optimisation process can be reduced considerably by the automatic routine developed and the evaluation of several independent design parameters is possible. This new procedure forms an important milestone towards automatic CFD-based furnace and boiler optimisations in the future. © 2013 Elsevier Ltd.
Other papers | 2013
Advanced biomass fuel characterisation based on tests with a specially designed lab-reactor
Brunner T, Biedermann F, Kanzian W, Evic N, Obernberger I. Advanced biomass fuel characterization based on tests with a specially designed lab-scale reactor. Energy and Fuels. 2013;27(10):5691-8.
External Link Details AbstractTo examine relevant combustion characteristics of biomass fuels in grate combustion systems, a specially designed lab-scale reactor was developed. On the basis of tests performed with this reactor, information regarding the biomass decomposition behavior, the release of NOx precursor species, the release of ash-forming elements, and first indications concerning ash melting can be evaluated. Within the scope of several projects, the lab-scale reactor system as well as the subsequent evaluation routines have been optimized and tests with a considerable number of different biomass fuels have been performed. These tests comprised a wide variation of different fuels, including conventional wood fuels (beech, spruce, and softwood pellets), bark, wood from short rotation coppice (SRC) (poplar and willow), waste wood, torrefied softwood, agricultural biomass (straw, Miscanthus, maize cobs, and grass pellets), and peat and sewage sludge. The results from the lab-scale reactor tests show that the thermal decomposition behavior and the combustion behavior of different biomass fuels vary considerably. With regard to NOx precursors (NHx, HCN, NO, N2O, and NO2), NH3 and, for chemically untreated wood fuels, also HCN represent the dominant nitrogen species. The conversion rate from N in the fuel to N in NOx precursors varies between 20 and 95% depending upon the fuel and generally decreases with an increasing N content of the fuel. These results gained from the lab-scale reactor tests can be used to derive NOx precursor release models for subsequent computational fluid dynamics (CFD) NOx post-processing. The release of ash-forming vapors also considerably depends upon the fuel used. In general, more than 91% of Cl, more than 71% of S, 1-51% of K, and 1-50% of Na are released to the gas phase. From these data, the potential for aerosol emissions can be estimated, which varies between 18 mg/Nm3 (softwood pellets) and 320 mg/Nm3 (straw) (dry flue gas at 13% O2). Moreover, these results also provide first indications regarding the deposit formation risks associated with a certain biomass fuel. In addition, a good correlation between visually determined ash sintering tendencies and the sintering temperatures of the different fuels (according to ÖNORM CEN/TS 15370-1) could be observed. © 2013 American Chemical Society.
Conference presentations and posters | 2013
An environmental impact assessment of Romanian wood pellets delivered to Austrian households and converted into heat
Maderthaner E, Ehrig R. An environmental impact assessment of Romanian wood pellets delivered to Austrian households and converted into heat, Word Sustainable Energy Days next 2013, 27th-28th of February 2013, Wels, Austria.
DetailsConference presentations and posters | 2013
An Experimental Approach for the Production of Pure Hydrogen Based on Wood Gasification
Fail S, Diaz N, Konlechner D, Hackel M, Sanders E, Rauch R, Harasek M, Bosch K, Schwenninger F, Zapletal P, Schee Z, Hofbauer H. An Experimental Approach for the Production of Pure Hydrogen Based on Wood Gasification, International Conference on Polygeneration Strategies (ICPS13) 2013, 3th-5th of September 2013, Vienna, Austria. p 109-117. (peer reviewed)
DetailsOther Publications | 2013
Analyse und Optimierung der Verfügbarkeit vom BHKW Güssing
Tripolt, M. Analyse und Optimierung der Verfügbarkeit vom BHKW Güssing, Master Thesis, Technische Universität Wien, Vienna, Austria, 2013.
DetailsConference presentations and posters | 2013
Applicability and slag formation survey of different biomass fuel qualities in small scale combustion – a Substudy in the EU FP7-SME project AshMelT
Schwabl M, Feldmeier S, Nagelhofer K, Wopienka E, Haslinger W. Applicability and slag formation survey of different biomass fuel qualities in small scale combustion – a Substudy in the EU FP7-SME project AshMelT, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1156-1159.
DetailsOther papers | 2013
Application of novel and advanced fuel characterization tools for the combustion related characterization of different wood/Kaolin and straw/Kaolin mixtures
Sommersacher P, Brunner T, Obernberger I, Kienzl N, Kanzian W. Application of novel and advanced fuel characterization tools for the combustion related characterization of different wood/kaolin and straw/kaolin mixtures. Energy and Fuels. 2013;27(9):5192-206.
External Link Details AbstractThe increased demand for energy from biomass enforces the utilization of new biomass fuels (e.g., energy crops, short-rotation coppices, as well as wastes and residues from agriculture and the food industry). Compared to conventional wood fuels, these new biomass fuels usually show considerably higher ash contents and lower ash sintering temperatures, which leads to increased problems concerning slagging, ash deposit formation, and particulate matter emissions. One possibility to combat these problematic behaviors is the application of fuel additives such as kaolin. In contrast to the usual approach for the application of additives based on an experimental determination of an appropriate additive ratio, this study applies novel and advanced fuel characterization tools for the characterization of biomass/kaolin mixtures. In the first step the pure biomass fuels (softwood from spruce and straw) and the additive were chemically analyzed. On the basis of the analysis theoretical mixing calculations of promising kaolin ratios were conducted. These theoretical mixtures were evaluated with fuel indexes and thermodynamic equilibrium calculations (TEC). Fuel indexes provide the first information regarding high temperature corrosion (2S/Cl) and ash melting tendency (Si + P + K)/(Ca + Mg + Al). TEC can be used for a qualitative prediction of the release of volatile and semivolatile elements (K, Na, S, Cl, Zn, Pb) and the ash melting behavior. Moreover, selected mixtures of spruce and straw with kaolin were prepared for an evaluation and validation of the release behavior of volatile and semivolatile ash forming elements with lab-scale reactor experiments. The validation of the ash melting behavior was conducted by applying the standard ash melting test. It could be shown that the new approach to apply novel and advanced fuel characterization tools to determine the optimum kaolin ratio for a certain biomass fuel works well and thus opens a new and targeted method for additive evaluation and application. In addition, it helps to significantly reduce time-consuming and expensive testing campaigns. © 2013 American Chemical Society.
Conference presentations and posters | 2013
AshMelT – Development of a Practical and Reliable Ash Melting Test for Biomass Fuels, in particular for Wood Pellets
Feldmeier S, Schwabl M, Höftberger E, Wopienka E. AshMelT – Development of a Practical and Reliable Ash Melting Test for Biomass Fuels, in particular for Wood Pellets, European Pellets Conference 2013, 27th-28th of February 2013, Wels, Austria.
DetailsOther papers | 2013
Assessment of online corrosion measurements in combination with fuel analysis, aerosol and deposit measurements in a biomass CHP plant
Retschitzegger S, Brunner T, Waldmann B, Obernberger I. Assessment of online corrosion measurements in combination with fuel analysis, aerosol and deposit measurements in a biomass CHP plant. Energy and Fuels. 2013;27(10):5670-5683.
Details AbstractTo systematically investigate high-temperature corrosion of superheaters in biomass combined heat and power
(CHP) plants, a long-term test run (5 months) with online corrosion probes was performed in an Austrian CHP plant (28 MWNCV; steam parameters: 32 t/h at 480 °C and 63 bar) firing chemically untreated wood chips. Two corrosion probes were applied in parallel in the radiative section of the boiler at average flue gas temperatures of 880 and 780 °C using the steel 13CrMo4-5 for the measurements. Corrosion rates were determined for surface temperatures between 400 and 560 °C. The results show generally moderate corrosion rates and a clear dependence upon the flue gas temperatures and the surface temperatures of the corrosion probes, but no influence of the flue gas velocity has been observed. The data are to be used to create corrosion diagrams to determine maximum steam temperatures for superheaters in future plants, which are justifiable regarding the corrosion rate. Dedicated measurements were performed at the plant during the long-term corrosion probe test run to gain insight into the chemical environment of the corrosion probes. From fuel analyses, the molar 2S/Cl ratio was calculated with an average of 6.0, which indicates a low risk for high-temperature corrosion. Chemical analyses of aerosols sampled at the positions of the corrosion probes showed that no chlorine is present in condensed form at the positions investigated. Deposit probe measurements performed at the same positions and analyses of the deposits also showed only small amounts of chlorine in the deposits, mainly found at the leeward position of the probes. Subsequent to the test run, the corrosion probes have been investigated by means of scanning electron microscopy/energy-dispersive X-ray spectroscopy analyses. The results confirmed the deposit probe measurements and showed only minor Cl concentrations in the deposits and no Cl at the corrosion front. Because, in the case of Cl-catalyzed active oxidation, a layer of Cl is known to be found at the corrosion front, this mechanism is assumed to be not of relevance in the case at hand. Instead, elevated S concentrations were detected at the corrosion front, but the corrosion mechanism has not yet been clarified.
Other Publications | 2013
Ausbrandregelung von Biomasse-Kleinfeuerungsanlagen
Rumpf, M. Ausbrandregelung von Biomasse-Kleinfeuerungsanlagen, Master Thesis, Technische Universität Graz, Graz, Austria, 2013.
Details Abstract Die Anzahl der installierten Biomasse-Kleinfeuerungsanlagen ist in letzter Zeit deutlich gestiegen. Aus diesem Grund ist es umso wichtiger eine schadstoffarme und effiziente Verbrennung zu ermöglichen. Genau diese Anforderung stellt jedoch eine große Herausforderung für deren Regelung dar. Der optimale Restsauerstoffgehalt des Rauchgases, im Sinne von niedrigen Kohlenmonoxidemissionen (CO-Emissionen) bei bestmöglichem Wirkungsgrad, ist sehr stark vom Betriebszustand, von der Anlagengeometrie und vom verwendeten Brennstoff abhängig. Diese Tatsache wird jedoch derzeit bei den Regelungen von Biomasse-Kleinfeuerungsanlagen nicht oder nur teilweise berücksichtigt. Um hohe CO-Emissionen aufgrund von Sauerstoffmangel in jedem Fall zu vermeiden, werden Biomasse-Kleinfeuerungsanlagen üblicherweise mit vergleichsweise hohem Sauerstoff betrieben. Diese Maßnahme geht jedoch mit einer unerwünschten Reduktion des Wirkungsgrades der Feuerung einher. Diese Arbeit hat zum Ziel eine Strategie zu entwickeln, welche das Luftverhältnis sowie auch die Luftstufung während des Betriebes dahingehend anpasst, dass stets ein möglichst effizienter und dennoch schadstoffarmer Betrieb gewährleistet wird. Die im Rahmen dieser Masterarbeit behandelten Arbeiten, wurden anhand einer handelsüblichen Biomasse-Kleinfeuerungsanlage durchgeführt. Die verwendete Anlage wird mit Hackgut betrieben und hat eine Kesselnennleistung von 30 kW. Für die Anwendung einer Strategie zur Reduktion der CO-Emissionen wäre es von großem Vorteil, wenn der CO-Gehalt des Rauchgases gemessen werden könnte. Derzeit gibt es jedoch nur sehr teure Rauchgasanalyseeinheiten, welche für eine dauerhafte Bestimmung des CO-Gehaltes des Rauchgases geeignet sind. Somit war bis jetzt eine Messung des CO-Gehalts nur bei großen Biomassefeuerungsanlagen wirtschaftlich. In dieser Arbeit wurde zunächst eine Marktanalyse zu preiswerten Sensoren zur Detektion unverbrannter Komponenten im Rauchgas durchgeführt. Es wurden ausschließlich Sensoren untersucht, die aufgrund ihres geringen Preises auch wirtschaftlich eingesetzt werden können. Dabei zeigte sich, dass es derzeit zwei Sensoren gibt, welche diese Anforderungen erfüllen. Diese Sensoren dienen jedoch lediglich zur Detektion von unverbrannten Komponenten im Rauchgas und sind nicht in der Lage den CO-Gehalt des Rauchgases exakt zu messen. Aus diesem Grund wurde der Zusammenhang zwischen CO-Konzentration und Sensorsignal untersucht und anschließend mathematisch beschrieben, wobei die wesentlichen Querempfindlichkeiten berücksichtigt wurden. Da die physikalischen Zusammenhänge sehr komplex und zu einem wesentlichen Teil nicht bekannt waren, wurde das mathematische Modell mit Hilfe der experimentellen Modellbildung ermittelt, wobei die verwendeten Messdaten einen möglichst großen Bereich der verschiedenen Einflussparameter beinhalteten. In weiterer Folge wurden umfassende Testläufe zur Untersuchung der Auswirkung der Leistung, des Luftverhältnisses im Brennstoffbett, des gesamten Luftverhältnisses und des Brennstoffwassergehaltes auf die CO-Emissionen durchgeführt. Die Ergebnisse zeigten, dass es für einen möglichst effizienten und gleichzeitig schadstoffarmen Betrieb notwendig ist, das Luftverhältnis im Brennstoffbett sowie den Sekundär"-luft"-massen"-strom in Abhängigkeit der geforderten Leistung zu variieren. Darauf aufbauend wurde eine geeignete Strategie zur Umsetzung dieser Maßnahmen entwickelt und implementiert. Dabei werden die Führungsgrößen für den Restsauerstoffgehalt sowie das Luftverhältnis im Brennstoffbett laufend an die geforderte Leistung angepasst. Zusätzlich dazu wird die Führungsgröße für den Restsauerstoffgehalt durch einen Suchalgorithmus zur Minimierung der CO-Emissionen variiert. Schlussendlich wurde die entwickelte Strategie mit Hilfe eines typischen Lastzyklus experimentell verifiziert.
Other Publications | 2013
Austrian context for biowaste and case study on brewery waste
Bochmann G. Austrian context for biowaste and case study on brewery waste, Biogaz Europe 2013, 20th of March 2013, Nantes, France.
DetailsOther Publications | 2013
Automatisierung und Visualisierung einer Anlage zur Wasserstoffgewinnung aus Biomasse
Malits, M. Automatisierung und Visualisierung einer Anlage zur Wasserstoffgewinnung aus Biomasse, Master Thesis, Fachhochschule Technikum Wien, Vienna, Austria, 2013.
DetailsOther papers | 2013
Behavior of inorganic matter in a dual fluidized steam gasification plant
Kirnbauer F, Koch M, Koch R, Aichernig C, Hofbauer H. Behavior of inorganic matter in a dual fluidized steam gasification plant. Energy and Fuels. 2013;27(6):3316-31.
External Link Details AbstractAsh components of biomass fuels can cause fouling, slagging, and bed material agglomeration during thermal utilization in fluidized bed combustion and gasification plants. The influence of ash components on these problems in dual fluidized bed biomass gasification plants is investigated in an industrial scale plant in Güssing, Austria. Samples of fouling are analyzed, and the results are evaluated. The samples were analyzed by X-ray fluorescence analysis and thermal analyses such as thermogravimetric analysis, differential thermal analysis, and differential scanning calorimetry. Mass balances of inorganic matter are presented, evaluating different loop configurations. The analyses showed high potassium contents compared to the fuel ash composition in fouling of up to 23% by weight. The potassium content of fly ash with a particle size smaller than 200 μm is half that of coarse fly ash with a particle size larger than 200 μm. The thermal analyses showed a large difference between samples of inorganic streams such as fly ash or fly char and fouling. Different fractions of fly ash samples (particle fraction smaller than 200 μm and particle fraction larger than 200 μm) showed similar thermal behavior: endothermic weight losses at around 400 C and around 720-820 C caused by decomposition of carbonates. The composition of inorganic matters of fly ash and fly char is similar. The elemental composition of deposits at the cyclone wall and the first heat exchanger in the flue gas path showed high potassium contents up to 23.6%. While samples of fly ash and fly char did not show significant melting in their thermal behavior, melting could be detected with fouling at temperatures higher than 1000 C. Mass balances of inorganic matter showed a flow of potassium oxide from the combustion reactor to the gasification reactor, which leads to unexpected high potassium concentrations in the fly char. A reduction of ash loops reduces the amount of potassium that is transferred from the combustion reactor to the gasification reactor. Recommendations are made for the operation of dual fluidized bed gasification plants in terms of ash handling to reduce tendencies for fouling, slagging, and bed material agglomeration. © 2013 American Chemical Society.
Conference presentations and posters | 2013
Bioenergie aus Mikroalgen - Forschung und Vernetzung im Kompetenzzentrum BIOENERGY 2020+
Sonnleitner A. Vernetzungsworkshop "Algen als biogene Ressource - Akteure in Österreich", Bioenergie aus Mikroalgen - Forschung und Vernetzung im Kompetenzzentrum BIOENERGY 2020+, 6th of November, Wieselburg-Land, Austria, 2013.
DetailsConference presentations and posters | 2013
Bioenergielösungen im Neubau
Schmidl C, Moser W, Reichert G. Bioenergielösungen im Neubau, Veranstaltung des Biomasseverbandes "Erneuerbare Wärme-Schlüssel zur Energiewende" 2013, 8th of May 2013, Vienna, Austria.
DetailsConference presentations and posters | 2013
Bioenergy and Microalgae - Research and networking activities at the Austrian competence centre BIOENERGY 2020+ with a special focus on Algae energy
Sonnleitner A, Bacovsky D, Wörgetter M. J –EraCenter, Workshop “Bioenergy and Microalgae - Research and networking activities at the Austrian competence centre BIOENERGY 2020+ with a special focus on Algae energy”, 21st of November, Vienna, Austria, 2013.
DetailsConference presentations and posters | 2013
Biofuels in Austria – yesterday, today and tomorrow
Wörgetter M, Bacovsky D. Biofuels in Austria – yesterday, today and tomorrow, 20th International Symposium on Alcohol Fuels (ISAF) 2013, 25th-27th of March 2013, Cape Town, South Africa.
DetailsConference presentations and posters | 2013
Biofuels RD&D in BIOENERGY 2020+
Bacovsky D. Biofuels RD&D in BIOENERGY 2020+, Eco-Mobility Conference 2013, 3rd-4th of October 2013, Vienna, Austria.
DetailsConference presentations and posters | 2013
Biomass Price Volatility - Analysis of the Historic Biomass and Energy Price volatility in the Austrian Market
Kristöfel C, Strasser C, Morawetz U, Schmidt J, Schmid E. Biomass Price Volatility - Analysis of the Historic Biomass and Energy Price volatility in the Austrian Market, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1721-1727.
Details AbstractSeveral energy and agricultural commodities have experienced higher price volatility in recent years. Hence, the interest in food and energy security issues as well as price volatility has increased, particularly since the rise in food and energy commodity prices in 2007/2008. Volatility is associated with risk since higher price volatility leads to additional costs that are often shared and transmitted along the supply chain to the final consumers. Volatility of woody biomass prices is also possibly higher due to increased market dynamics and integration as well as renewable energy policy intervention. We compute historic price volatility using the standard deviation of log returns as well as univariate GARCH models and empirically analyze whether or not price volatility of woody biomass commodities has increased in recent years. We also compare the historic price volatility of woody biomass to the price volatility of agricultural commodities and fossil fuels. Results indicate that the price volatility of some woody biomass commodities has increased, but it is still lower than of agricultural biomass and fossil fuels.
Other Publications | 2013
Can bioavailability of trace nutrients be measured in an AD process?
Ortner M, Rachbauer L, Somitsch W, Fuchs W. Can bioavailability of trace nutrients be measured in an AD process? Bioenergy Conference 2013, 4th-6th of September 2013, Jyväskylä, Finnland.
DetailsConference presentations and posters | 2013
Characterisation of Jatropha mahafalensis oil
Sonnleitner A. Characterisation of Jatropha mahafalensis oil, Word Sustainable Energy Days next 2013, 27th-28th of February 2013, Wels, Austria.
DetailsConference presentations and posters | 2013
Characterization of modern biomass heating and domestic hot water supply systems
Haslinger W, Schmidl C, Schwarz M, Schwabl M, Golicza L, Carlon E, Wopienka E, Verma V. Characterization of modern biomass heating and domestic hot water supply systems, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.
DetailsOther papers | 2013
Co-firing of imported wood pellets - an option to efficiently save CO2 emissions in Europe?
Ehrig R, Behrendt F. Co-firing of imported wood pellets - An option to efficiently save CO2 emissions in Europe? Energy Policy. 2013;59:283-300.
External Link Details AbstractIn this paper the energy and carbon footprints of pellet imports from Australia, West Canada, and Russia for co-firing in Europe are investigated. Their ecologic and economic performances are proven by applying the Belgian and UK co-firing subsidy systems, which require dedicated sustainability evaluations. Based on the modelling of different subsidy schemes and price scenarios, the present paper identifies favourable conditions for the use of biomass co-firing in Germany and Austria, which currently do not have dedicated co-firing incentives. The present paper shows that under present conditions, co-firing has a narrow financial gap to coal with -3 to 4€ Cent/kWhel and has low CO2 mitigation costs compared to other renewables. Moreover, it is shown that co-firing is one of the most cost-attractive options to reach the EU-2020 targets. For policy makers, the support of co-firing is found to be very efficient in terms of cost-benefit ratio. It is proven that the co-firing subsidy schemes might direct supply chain decisions towards options with low energy and carbon impacts. © 2013 Elsevier Ltd.
Other papers | 2013
Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: Possible interactions of fuels
Wilk V, Hofbauer H. Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: Possible interactions of fuels. Energy and Fuels. 2013;27(6):3261-73.
External Link Details AbstractCo-gasification of biomass and plastics was investigated in a 100 kW dual fluidized-bed pilot plant using four types of plastic material of different origins and soft wood pellets. The proportion of plastics was varied within a broad range to assess the interaction of the materials. The product gas composition was considerably influenced by co-gasification, whereas the changes were nonlinear. More CO and CO2 were measured in the product gas from co-gasification than would be expected from linear interpolation of mono-gasification of the materials. Less CH4 and C2H 4 were formed, and the tar content in the product gas was considerably lower than presumed. With the generation of more product gas than expected, co-gasification of wood and plastic materials also had other beneficial effects. Because of the fuel mixtures, more radicals of different types were available that interacted with each other and with the fluidization steam, enhancing the reforming reactions. Wood char had a positive effect on polymer decomposition, steam reforming, and tar reduction. As a result of the more active splash zone during co-gasification of wood and plastics, contact between gas and bed material was enhanced, which is crucial for catalytic tar removal. © 2013 American Chemical Society.
Other papers | 2013
Conversion of fuel nitrogen in a dual fluidized bed steam gasifier
Wilk V, Hofbauer H. Conversion of fuel nitrogen in a dual fluidized bed steam gasifier. Fuel. 2013;106:793-801.
DetailsOther papers | 2013
Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier
Wilk V, Hofbauer H. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel. 2013;107:787-799.
External Link Details AbstractSteam gasification of plastic materials was studied in a dual fluidized bed gasification pilot plant (DFB). Several types of plastics, which are available in large amounts in waste streams, were investigated: PE, PP, and mixtures of PE + PS, PE + PET and PE + PP. It was found that the product gas from PE was rich in CH4 and C2H4 and had a LCV of 25 MJ/N m 3. About 22% of PE was converted to the monomer C2H4. Different mixtures of PE with other polymers showed, that the concentrations of CH4 and C2H4increased with an increasing proportion of PE and that they were the main decomposition products of PE. The product gas from pure PP contained more CH4 and less C2H4compared to the product gas from PE. The polymer mixtures behaved differently from the pure substances. Significantly more H2 and CO were generated from PE + PP and PE + PS. It can be assumed that the decomposition products of the two polymers in the mixture interacted strongly and alternately influenced the gasification process. More water was converted, so the gas production increased. The reforming reactions were enhanced and yielded H2 and CO at the expense of CH4 and C2H4. The mixture of PE + PET differed from the other polymers because of the high oxygen content of PET. Thus, 28% of CO2 were measured in the product gas. By contrast, CO2 was in the range of 8%, when oxygen-free polymers were gasified and CO2 was only produced from reactions with steam. Gasification of polymers resulted in significantly high tar loads in the product gas in the range of 100 g/N m 3. The GCMS analysis of tars showed that tars from polymers mainly consisted of PAH and aro-matics. Naphthalene was the most important tar compound. © 2013 Elsevier Ltd. All rights reserved.
Other papers | 2013
Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier
Wilk V, Hofbauer H. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel. 2013;107:787-99.
External Link Details AbstractSteam gasification of plastic materials was studied in a dual fluidized bed gasification pilot plant (DFB). Several types of plastics, which are available in large amounts in waste streams, were investigated: PE, PP, and mixtures of PE + PS, PE + PET and PE + PP. It was found that the product gas from PE was rich in CH4 and C2H4 and had a LCV of 25 MJ/N m 3. About 22% of PE was converted to the monomer C2H4. Different mixtures of PE with other polymers showed, that the concentrations of CH4 and C2H4 increased with an increasing proportion of PE and that they were the main decomposition products of PE. The product gas from pure PP contained more CH4 and less C2H4 compared to the product gas from PE. The polymer mixtures behaved differently from the pure substances. Significantly more H2 and CO were generated from PE + PP and PE + PS. It can be assumed that the decomposition products of the two polymers in the mixture interacted strongly and alternately influenced the gasification process. More water was converted, so the gas production increased. The reforming reactions were enhanced and yielded H2 and CO at the expense of CH4 and C2H4. The mixture of PE + PET differed from the other polymers because of the high oxygen content of PET. Thus, 28% of CO were measured in the product gas. By contrast, CO2 was in the range of 8%, when oxygen-free polymers were gasified and CO2 was only produced from reactions with steam. Gasification of polymers resulted in significantly high tar loads in the product gas in the range of 100 g/N m 3. The GCMS analysis of tars showed that tars from polymers mainly consisted of PAH and aro-matics. Naphthalene was the most important tar compound. © 2013 Elsevier Ltd. All rights reserved.
Conference presentations and posters | 2013
Correlation between CO OFF-gassing and Linoleic fatty Acid content of wood Chips and Pellets
Emhofer W, Pöllinger-Zierler B, Siegmund B, Haslinger W, Leitner E. Correlation between CO OFF-gassing and Linoleic fatty Acid content of wood Chips and Pellets, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1362-1364.
Details AbstractDuring storage of wood pellets emissions of carbon monoxide (CO) and a large quantity of volatile organic compounds (VOCs) can be detected. These off-gases have been reported to originate from autooxidation reactions of woods own fatty acids, but data on CO formation rates based on fatty acid content is still scarce. In this paper data on the formation rates of CO from oxidation of pure linoleic acid are presented and compared to CO formation rates measured from spruce shavings, spruce sawdust and pellets made from the respective raw materials. To determine whether linoleic acid content is a realistic prediction tool for CO formation the fatty acid contents of the spruce materials have been determined and a comparison of predicted CO formation rates (based on linoleic acid content) to actually measured CO formation rates has been made. The results show that, albeit the fact that the determination of linoleic acid content is not the sole determining factor for an accurate prediction of CO formation rates, it is a helpful indicator in estimating a critical maximum rate of CO formation. The actual formation rates for CO, however, are typically lower than the predicted values and depend to a large extent on the history of the material and whether or not it has been activated. Activation includes treatments such as pelletizing, drying and/or milling.
Peer reviewed papers | 2013
Development of a biomass heating device for low energy and passive houses
Schwabl M, Schwarz M, Figl F, Carvalho L, Staudinger M, Kalb W, et al. Development of a biomass heating device for low energy and passive houses. Management of Environmental Quality. 2013;24(5):652-66.
External Link Details Abstracturpose: Decreasing energy demand due to improved building standards requires the development of new biomass combustion technologies to be able to provide individual biomass heating solutions. The purpose of this paper is, therefore, the development of a pellet water heating stove with minimal emission at high thermal efficiency. Design/methodology/approach: The single components of a 10 kW water heating pellet stove are analysed and partly redesigned considering the latest scientific findings and experimental know-how in combustion engineering. The outcome of this development is a 12 kW prototype which is subsequently down-scaled to a 6 kW prototype. Finally, the results of the development are evaluated by testing of an accredited institute. Findings: Based on an existing pellet water heating stove, the total excess air ratio was reduced, a strict air staging was implemented and the fuel supply was homogenized. All three measures improved the operating performance regarding emissions and thermal efficiency. The evaluation of the development process showed that the CO emissions are reduced by over 90 per cent during full load and by 30-60 per cent during minimum load conditions. Emissions of particulate matter are reduced by 70 per cent and the thermal efficiency increased to 95 per cent. Originality/value: The result represents a new state of technology in this sector for minimal emissions and maximal thermal efficiency, which surpasses the directives of the Eco label "UZ37" in Austria and "Blauer Engel" in Germany, which are amongst the most stringent performance requirements in the European Union. Hence this design possesses a high potential as heating solution for low and passive energy houses. © Emerald Group Publishing Limited.
Conference presentations and posters | 2013
Development of a test gas generator for biomass gasification derived process gas - a test methodology for quality insurance and development
Martini S, Kleinhappl M. Development of a test gas generator for biomass gasification derived process gas - a test methodology for quality insurance and development, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 775-777.
DetailsConference presentations and posters | 2013
Dual fluidized bed gasification: operational experiences and future developments
Wilk V, Hofbauer H. Gasification Technologies: Delivering the Potential, Workshop “Dual fluidized bed gasification: Operational experiences and future Developments”, 23rd of October, Newcastle, England, 2013.
DetailsOther Publications | 2013
Dynamic modelling of hydronic heating systems supplied by a biomass boiler for residential application: solutions for the optimization of the control strategy
Rimoldi, M. Dynamic modelling of hydronic heating systems supplied by a biomass boiler for residential application: solutions for the optimization of the control strategy, Master Thesis, Polytechnic University of Milan, Milan, Italy, 2013.
DetailsConference presentations and posters | 2013
Economic Comparison of Torrefaction-Based and Conventional Pellet Production-to-End-Use Chains
Ehrig R, et al. Economic Comparison of Torrefaction-Based and Conventional Pellet Production-to-End-Use Chains, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1342-1349.
Details AbstractBiomass upgrading through torrefaction is expected to relevantly reduce biomass trade costs and thus energy costs for the end-user. In this framework, the present work aims at defining crucial technical and cost parameters for the production, fuel properties, supply and end-use of torrefied pellets. The findings are used to compare four real-case wood pellet with corresponding torrefied pellet supply chains. Input data are derived from laboratory fuel, pelletising and storage experiments with torrefied biomass provided from European producers, cost estimations based on experience from related technology engineering and set-up as well as from expert consultations. This allows a step-by-step comparison of cost advantages and additional expenses from pretreatment to end-user. As a result, torrefied pellets turn out to be a certain alternative for wood pellets. The cost comparison demonstrates that the production of torrefied pellets is still much more cost-intensive, but can be partly compensated by reduced transportation costs. At the end-user, heat production in small-scale pellet boilers is technically feasible, but with slightly higher costs. Co-firing torrefied pellets in large-scale coal plants can be cost-competitive to industrial wood pellets, when no additional retrofit and operation and maintenance costs incur.
Other Publications | 2013
Einfluss der thermo-chemischen Vorbehandlung von Biertrebern auf die anaerobe Fermentation
Bochmann, G. Einfluss der thermo-chemischen Vorbehandlung von Biertrebern auf die anaerobe Fermentation, Ph.D. Thesis, Universität für Bodenkultur Wien, Vienna, Austria, 2013.
Details AbstractGegenstand der Arbeit ist der thermische und thermo-chemische Aufschluss von Biertrebern. Dabei werden die Prozessbedingungen wie Chemikalien, Konzentration, Aufschlusstemperatur sowie Aufschlussdauer und deren Einfluss auf die Biogasgewinnung untersucht. Der Nachweis erfolgt entlang den einzelnen Prozessstufen Hydrolyse, Acidogenese und Methanogenese. Die Prozessparameter der Aufschlüsse haben sowohl einen starken Einfluss auf die Hydrolyse der Lignozellulose als auch auf die Bildung thermischer Nebenprodukte. Diese Zwischenprodukte beeinflussen unter anderem den Schritt der Acidogenese stark. Wohingegen die Endprodukte, Melanoidine, anaerob kaum abbaubar sind und damit die Biogasausbeute reduzieren. Die höchsten Methanerträge werden mit einer Behandlungstemperatur von 140 °C erreicht. Unterschiedlich sind dabei die Höhe der zusätzlichen Gaserträge von 28 Vol.-% mit H2O sowie rund 50 Vol.-% mit Lauge und 60 Vol.-% mit Säure. In semi-kontinuierlich beschickten Reaktoren konnten mit unbehandelten Trebern Erträge von 410 m³N CH4/Mg oTS realisiert werden. Thermisch aufgeschlossene Treber ergeben Erträge von 468 m³N CH4/Mg oTS (+14 %). Durch die Zugabe von Lauge zum thermischen Aufschluss kann der Methanertrag auf 558 m³N/Mg oTS (+36 %) gesteigert werden. Auf Grund der Prozessinstabilitäten war der acido-thermisch aufgeschlossene Treber nicht auswertbar. Der Mehrertrag in den Aufschlüssen ist auf die verbesserte Verwertung der Zellulose und Hemizellulose zurückzuführen. Durch die Vorbehandlung der Biertreber gelingt es, die Treberverwertung wirtschaftlicher zu gestalten. Nach der Vergütung im Österreichischen Ökostromgesetz 2012 können Erträge von bis 13 €/Mg FM Treber erreicht werden. Dies ist insbesondere durch eine thermo-chemischen Vorbehandlung möglich
Conference presentations and posters | 2013
Emissions from Wood Pellets During Storage Referring to the Extractive Content
Schmutzer-Rosendeder I, Emhofer W, Haslinger W. Emissions from Wood Pellets During Storage Referring to the Extractive Content, Word Sustainable Energy Days next 2013, 27th-28th of February 2013, Wels, Austria.
Details AbstractWood pellets and wood raw materials such as chips or sawdust emit hazardous gases such as carbon monoxide (CO) and volatile organic compounds (VOCs) during processing and storage. Due to the high toxicity of CO it is necessary to identify the release mechanisms for CO and VOCs. Several studies show that organic extractives decrease during storage as well as the emissions. Therefore, the purpose of this study was to investigate a possible correlation between the organic extractive content and the release of CO and VOCs. Sawdust and pellets from Norway spruce (Picea abies), European larch (Larix decidua) and loblolly pine (Pinus taeda) were examined. Additionally, five different pellet samples from Austrian pellet producers were investigated. Soxhlet extraction with acetone was used to extract the organic content. The concentration of CO and VOCs was measured from stored wood materials and pellets in sealed glass flasks. The highest (3,41 mg CO/kg sample dm/d) and the lowest (0,02 mg CO/kg sample dm/d) release of CO were reported with freshly produced pine pellets and a spruce pellets sample from an Austrian do-it-yourself store, respectively. The results showed that the pelletizing process reduced the content of organic extractives. The emissions of pine samples concerning CO and VOCs were higher than of the spruce and larch samples. Moreover, the organic extractive content also decreased in that order. However, a direct correlation between organic extractive content and released quantities of emissions could not be established.
Other Publications | 2013
Energy independent food processing industry -- realization of an innovative waste & energy management concept
Ortner M, Pröll T, Schumergruber A, Fuchs W. Energy independent food processing industry - realization of an innovative waste & energy management concept, Beijing International Environmental Technology Conference 2013, 21st-23rd of October 2013, Beijing, China.
DetailsConference presentations and posters | 2013
Enhanced flue gas condensation technology: analysis of a 10MW demonstration plant
Hebenstreit B, Höftberger E, Ohnmacht R, Lundgren J, Toffolo A. Enhanced flue gas condensation technology: analysis of a 10MW demonstration plant, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1614-1617.
DetailsOther Publications | 2013
Experimentelle und numerische Untersuchung der Wärmeleitung in Depositionsschichten
Andonov, W. Experimentelle und numerische Untersuchung der Wärmeleitung in Depositionsschichten, Diploma Thesis, Technische Universität Graz, Graz, Austria, 2013.
Details AbstractDer Schwerpunkt dieser Arbeit richtet sich auf die Kondensation von Aschedämpfen und die Feinstaubablagerung in Biomasse-befeuerten Kesseln. Zu diesem Zweck wurden in einer Versuchsanlage aschebildende Substanzen verdampft und anschließend auf einer gekühlten Sonde kondensiert. Als Modellsubstanz für die Aschedämpfe der Biomasse wurde Kaliumchlorid verwendet. Das Rauchgas wurde dabei mittels Verbrennung von Erdgas durch einen Gasbrenner zur Verfügung gestellt. Es sollten Informationen darüber gewonnen werden, welche Struktur die Depositionsschicht durch Kondensation oder Feinstaubablagerung ausbildet (Porosität, Homogenität, Festigkeit, Struktur) und wie die gebildete Depositionsschicht den Wärmeübergang beeinflusst. Die Berechnung des Kondensationsmassenstromes der aschebildenden Substanz mittels eines Ähnlichkeitsansatzes zum Wärmeübergang (Lewis-Ansatz) zeigt eine gute Übereinstimmung zu den experimentellen Versuchen. Die Depositionsschicht weist eine sehr hohe Porosität (p > 0,97) auf. Das Wärmeleitmodell „k maximum“ berechnet entsprechende Werte für die Wärmeleitfähigkeit der Depositionsschicht. Die Struktur der gebildeten Depositionsschicht ist von der Oberflächentemperatur der Sonde abhängig. Bei niedriger Sondentemperatur (T1 = 300 °C) bildet sich das Gefüge der Kondensationsschicht aus Kaliumchlorid als würfelförmige Kristalle aus, die „turmartig“ aufeinander herauswachsen. Diese Schicht zeichnet sich durch eine höhere Stabilität aus. Bei höherer Sondentemperatur (T2 = 500 °C) ist das Gefüge aus kleineren nadeligen und tröpfchenförmigen Kristallen aufgebaut, welche „baumartig“ herauswachsen. Wenn man die Kondensationsschicht am Depositionsring betrachtet wird ersichtlich, dass sich die Verteilung der Depositionsmenge in Abhängigkeit von der Depositionsmasse sehr unterschiedlich ausbildet. Bei geringer Depositionsmenge (m < 0,01 [g]) ist die Verteilung gleichmäßig um den Ring verteilt, bei höherer Depositionsmenge (m>0,01 [g]) befindet sich der Hauptteil der Depositionsmasse hauptsächlich auf der rauchgaszugewandten Seite der Sonde. Obwohl die Berechnung der Kondensationsmassenströme mit Hilfe des Ähnlichkeitsansatzes eine gute Übereinstimmung zeigt, sind die berechneten Werte stets etwas höher als die gemessenen Ergebnisse. Es wird vermutet, dass die Ursache in der hohen Instabilität der Depositionsschicht liegt, wodurch Erosionsvorgänge durch die vom Rauchgas erzeugten Schubspannungen die Depositionsschichtdicke reduzieren. Die Wärmeleitfähigkeit der Depositionsschicht ist aufgrund der hohen Porosität (hoher Anteil des fluiden Rauchgasanteils mit geringer Wärmeleitfähigkeit, kleiner Anteil des stark wärmeleitenden festen Kaliumchlorids) sehr niedrig, aber trotzdem deutlich höher als die Wärmeleitfähigkeit des Rauchgases. Sie liegt in der Größenordnung von k = 0,1-0,2 [W/mK]. Schon geringe Depositionsschichtmassen bewirken eine starke Verringerung des Wärmeüberganges und einen damit verbundenen hohen Temperaturgradienten in der Depositionsschicht. In dieser Arbeit wurden die für den Aufbau der Depositionsschicht maßgebenden Einflussfaktoren untersucht. Diese sind die Rauchgasgeschwindigkeit, die Salzfreisetzung, die Kondensationsdauer und die Oberflächentemperatur. Die Salzfreisetzung ist maßgebend für die Kondensationsmasse. Eine Verdoppelung der Salzfreisetzungsrate zeigte im untersuchten Wandbereich eine Verdoppelung der Kondensationsrate. Eine Verdoppelung der Rauchgasgeschwindigkeit führte zu einer geringen Abnahme der Kondensationsmasse bei gleichbleibenden Betriebsparametern, welches höchstwahrscheinlich durch Erosionsvorgänge bedingt ist. Die Sondenoberflächentemperatur zeigte im untersuchten Temperaturbereich von 300°C-500°C bei geringen Kondensationsmassen keinen Einfluss auf die Kondensationsrate. Bei größeren Depositionsschichten hatte die höhere Temperatur eine Verringerung der Kondensationsrate zur Folge.
Conference presentations and posters | 2013
Experimentelle Untersuchungen der Hochtemperaturkorrosion von 13CrMo4-5 in einem mit Biomasse befeuerten Fallrohr und ihre Übertragbarkeit auf Großfeuerungsanlagen
Gruber T. Experimentelle Untersuchungen der Hochtemperaturkorrosion von 13CrMo4-5 in einem mit Biomasse befeuerten Fallrohr und ihre Übertragbarkeit auf Großfeuerungsanlagen, VDI-Fachkonferenz: Feuerungen und Kessel - Beläge und Korrosion - in Großfeuerungsanlagen 2013, 24th-25th of June 2013, Düsseldorf, Germany.
DetailsOther Publications | 2013
Extending the range of feedstock of the dual fluidized bed gasification process towards residues and waste
Wilk, V. Extending the range of feedstock of the dual fluidized bed gasification process towards residues and waste, Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2013.
DetailsPeer reviewed papers | 2013
Fischer Tropsch Synthesis to Biofuels (BtL Process)
Rauch R, Kiennemann A, Sauciuc A. Fischer Tropsch Synthesis to Biofuels (BtL Process). The role of catalysis for the sustainable production of Bio-fuels and Bio-chemicals. ISBN 978-0-444-56330-9 2013:397-443.
Details AbstractFischer-Tropsch (FT) synthesis is one option to produce liquid transportation fuels from carbon-containing feedstocks. In the past, FT synthesis was used mainly to convert coal or natural gas to diesel and gasoline. In the last decade, much R&D effort has been made to use this technology to convert biomass to a high-quality transportation fuel. In this chapter, the technology for BtL (conversion of biomass to liquid transportation fuels over FT synthesis) is described, from synthesis gas production including requirements on the gas quality to a detailed description of the FT synthesis itself. The main focus of this chapter is to give an overview of the types of catalysts, also including their preparation, reduction, and aging; the types of FT reactors; and also the reaction conditions including kinetic laws and mechanistic proposals.