Publication | Peer reviewed papers | Thermische Vergasung und Gasreinigung

Mechanism of Layer Formation on Olivine Bed Particles in Industrial-Scale Dual Fluid Bed Gasification of Wood

Kuba M, He H, Kirnbauer F, Skoglund N, Boström D, Öhman M, Hofbauer H

Published 15 September 2016

Citation: Kuba M, He H, Kirnbauer F, Skoglund N, Boström D, Öhman M, Hofbauer H. Mechanism of Layer Formation on Olivine Bed Particles in Industrial-Scale Dual Fluid Bed Gasification of Wood. Energy & Fuels. 15 September 2016;30(9): 7410-7418.

Abstract

Utilization of biomass as feedstock in dual fluidized bed steam gasification is a promising technology for the substitution of fossil energy carriers. Experience from industrial scale power plants showed an alteration of the olivine bed material due to interaction with biomass ash components. This change results mainly in the formation of Ca-rich layers on the bed particles. In this paper, a mechanism for layer formation is proposed and compared to the better understood mechanism for layer formation on quartz bed particles. Olivine bed material was sampled at an industrial scale power plant before the start of operation and at pre-defined times after the operation had commenced. Therefore, time dependent layer formation in industrial-scale conditions could be investigated. The proposed mechanism suggests that the interaction between wood biomass ash and olivine bed particles is based on a solid-solid substitution reaction, where Ca2+ is incorporated into the crystal structure. As a consequence Fe2+/3+ and Mg2+ ions are expelled as oxides. This substitution results in the formation of cracks in the particle layer due to a volume expansion in the crystal structure once Ca2+ is incorporated. The results of this work are compared to relevant published results including those related to quartz bed particles.
 

External Link


Filter

Contact Us

We invite you to contact our office under office@best-research.eu or a member of our personnel directly from this website. Fast and simple.

To Our Team Page