Publication | Peer reviewed papers | Modellierung und Simulation

Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach

Published 2022

Citation: Pongratz G, Subotić V, Hochenauer C, Scharler R, Anca-Couce A. Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach. 1 April 2022. 244.

Abstract

Solid oxide fuel cell (SOFC) models used in the past for biomass-to-power plant simulations are limited in their predictability of the carbon deposition risk. In this work, industrial-relevant cell designs were modeled in 2D-CFD considering detailed reaction kinetics which allowed more accurate performance simulations and carbon deposition risk assessments. Via a parametric study, the influence of varying cell operating conditions on the cell performance and carbon deposition risk was quantified when utilizing product gases from steam- and air gasification with varying steam addition. Considering the results from this parameter study and carbon deposition risk assessment, recommendations for promising gasifier-SOFC configurations and cell operating points for stable long-term operation are presented. For smaller-scale biomass-to-power systems, the utilization of product gas from air gasification in anode supported cells with Ni/zirconia-based anode can be recommended, with only moderate steam dilution of the product gas at 750°C cell operating temperature. For larger scales, steam gasification might be meaningful, offering a generally higher electrical efficiency and power output in fuel cells than air gasification. However, a higher risk for carbon deposition could be determined in comparison to air gasification. Hence, a cell temperature of 850°C besides the use of cells with Ni/ceria-based anodes is recommended.

External Link


Filter

Contact Us

We invite you to contact our office under office@best-research.eu or a member of our personnel directly from this website. Fast and simple.

To Our Team Page