Publication | Peer reviewed papers | Verbrennung

Applicability of Fuel Indexes for Small-Scale Biomass Combustion echnologies, Part 2: TSP and NOx Emissions

Feldmeier S, Wopienka E, Schwarz M, Schön C, Pfeifer C

Published 21 November 2019

Citation: Feldmeier S, Wopienka E, Schwarz M, Schön C, Pfeifer C. Applicability of Fuel Indexes for Small-Scale Biomass Combustion echnologies, Part 2: TSP and NOx Emissions. Energy & Fuels. 2019.33:11724-11730.

Abstract

Several studies pointed out that emission release is related to the concentration of particular elements in the fuel. Fuel indexes were developed to predict emissions of biomass combustion based on the elemental composition of the fuel. This study focuses on emissions of different biomass combustion technologies for domestic heating. Based on combustion tests with a wide range of fuel qualities we validated fuel indexes from the literature. We calculated the values for predicting total suspended particulate (TSP) matter and nitrogen oxide (NOx) emission of 39 biomass-derived fuels. Combustion tests conducted in 10 different small-scale appliances provided experimental data. The combustion technologies had a nominal load between 6 and 140 kWth. We measured TSP and NOx emissions during the stable phases of the experiments. The evaluation considered 529 combustion test intervals. All tested indexes for predicting the TSP corresponded well to the measured values. The correlation analysis confirmed that these indexes are associated with each other and are basically dominated by the concentration of potassium. The results regarding NOx emissions confirm previous findings from the literature by showing the typical nonlinear relation between nitrogen content of the fuel and NOx in the flue gas. Overall the comparison of the fuel indexes with the practical data indicated also an influence of the combustion technologies.

External Link


Filter

Contact Us

We invite you to contact our office under office@best-research.eu or a member of our personnel directly from this website. Fast and simple.

To Our Team Page