object(App\Model\Entity\Projectscontent) { 'id' => (int) 468, 'project_id' => (int) 572, 'longtitle_de' => 'ThermaFLEX: Thermal demand and supply as flexible elements of future sustainable energy systems', 'longtitle_en' => 'ThermaFLEX: Thermal demand and supply as flexible elements of future sustainable energy systems', 'content_de' => '<p><strong>Mehr Flexibilität für mehr Erneuerbare in der netzgebundenen Wärmeversorgung – das Leitprojekt „ThermaFLEX“</strong></p> <p><strong>Ausgangslage</strong></p> <p>Bei aktuellen Diskussionen um die Dekarbonisierung der Energieversorgung ist vielen nicht bewusst, dass der Bedarf für Raumklima und Warmwasser z.B. im Jahr 2019 rund 27% des Gesamtenergiebedarfs Österreichs ausgemacht hat<sup>1</sup>. Ein Viertel davon wird über netzgebundene Wärmeversorgung bereitgestellt, womit der Nah- und Fernwärmesektor eine zentrale Rolle in der Energieversorgung Österreichs spielt.</p> <p>Dessen Entwicklung in Richtung mehr Nachhaltigkeit wird zu einer erhöhten Systemkomplexität führen durch:</p> <ul> <li>die Integration großer Anteile an erneuerbaren, mitunter volatilen Energieträgern,</li> <li>Sektorkopplung mit dem Strom- und Gasnetz,</li> <li>dezentralisierte Energieumwandlungsstrukturen.</li> </ul> <p>Gleichzeitig müssen aber die Versorgungssicherheit gewahrt die Energiekosten für die Endkunden erschwinglich bleiben. Das kann nur durch eine erhöhte<strong> Flexibilität </strong>des Gesamtsystems und ein <strong>intelligentes Zusammenspiel der Elemente erreicht werden.</strong></p> <p><strong>Das Projekt ThermaFLEX</strong></p> <p>Genau damit beschäftigt sich das Leitprojekt „ThermaFLEX“<sup>2</sup> innerhalb der Vorzeigeregion „Green Energy Lab“<sup>3</sup>. Nicht weniger als 27 Projektpartner (Fernwärmenetzbetreiber, Technologieanbieter und Forschungs­einrichtungen) bearbeiten die Identifikation, die simulationsgestützte Planung und Bewertung von Flexibilisierungsmaßnahmen. Konkrete Umsetzungen werden langfristig beobachtet und optimiert. Im Fokus stehen dabei<strong> sieben Demonstratoren</strong> in Fernwärmeversorgungsgebieten von kleinen, mittleren und großen Städten.</p> <p><strong>Unsere Rolle im Projekt</strong></p> <p>Die BEST – Bioenergy and Sustainable Technologies GmbH ist maßgeblich für den optimierten Betrieb des Zusammenschlusses mehrerer kleinerer Nahwärmenetze im Demonstrator <strong>„100% Renewable District Heating Leibnitz“<sup>4</sup></strong> verantwortlich.</p> <p>Dabei geht es darum, Abwärme aus einer Tierkörperverwertung optimal nutzbar zu machen, indem zu Zeiten mit Überschuss benachbarte Nahwärmenetze mitversorgt werden. Steht hingegen nicht genug Abwärme zur Verfügung, soll ökologische Wärme aus Biomasse aus anderen Netzen den Einsatz des fossilen Spitzenlastkessels vermeiden helfen.</p> <p>Die optimale Bewirtschaftung der thermischen Speicher in jedem Netzwerk erfordert Prognosemethoden, um den erwarteten Verbrauch sowie die zur Verfügung stehende Abwärme abschätzen zu können. Darauf aufbauende Optimierungsalgorithmen stellen sicher, dass nicht zu wenig oder unnötig viel Wärme zwischen den Netzwerken ausgetauscht und der Betrieb sowohl ökologisch als auch für beide Betreiber ökonomisch optimiert wird.</p> <p>Endbericht: <a href="https://greenenergylab.at/wp-content/uploads/2023/09/thermaflex-publizierbarer-endbericht-eng-barrierefrei-final.pdf" target="_blank">https://greenenergylab.at/wp-content/uploads/2023/09/thermaflex-publizierbarer-endbericht-eng-barrierefrei-final.pdf</a></p> <p>______________________________________________________________________________</p> <p><sup>1</sup><a href="https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/nutzenergieanalyse/index.html" target="_blank"> https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/nutzenergieanalyse/index.html</a></p> <p><sup>2</sup> <a href="https://thermaflex.greenenergylab.at/thermaflex/" target="_blank">https://thermaflex.greenenergylab.at/thermaflex/</a></p> <p><sup>3</sup> <a href="https://greenenergylab.at/" target="_blank">https://greenenergylab.at/</a></p> <p><sup>4</sup> <a href="https://greenenergylab.at/projects/100-renewable-district-heating-leibnitz/" target="_blank">https://greenenergylab.at/projects/100-renewable-district-heating-leibnitz/</a></p> <h4> </h4> <h4>Weitere Informationen</h4> <p><a href="https://thermaflex.greenenergylab.at/" target="_blank">https://thermaflex.greenenergylab.at/</a></p> <p><a href="https://greenenergylab.at/projects/thermaflex/" target="_blank">https://greenenergylab.at/projects/thermaflex/</a></p> <h4>Presseaussendung</h4> <p><a href="https://www.best-research.eu/webroot/files/file/20211007_Pressetext_Thermaflex%20(002).pdf">https://www.best-research.eu/webroot/files/file/20211007_Pressetext_Thermaflex%20(002).pdf</a></p> ', 'content_en' => '<p><strong>More flexibility for more renewables in district heating networks - the lead project "ThermaFLEX".</strong></p> <p><strong>Starting point</strong></p> <p>In current discussions about the decarbonization of energy supply, many people are not aware that the demand for indoor climate and hot water accounted for 27% of Austria's total energy demand in e.g. 2019. A quarter of this is provided by heating networks, which means that the local and district heating sector plays a central role in Austria's energy supply.</p> <p>Its development towards more sustainability will lead to increased system complexity due to:</p> <ul> <li>the integration of large shares of renewable, sometimes volatile energy sources,</li> <li>sector coupling with the electricity and gas grids,</li> <li>decentralized energy conversion structures.</li> </ul> <p>At the same time, however, security of supply must be guaranteed and energy costs must remain affordable for end customers. This can only be achieved through increased <strong>flexibility</strong> of the overall system and <strong>intelligent interaction of the elements.</strong></p> <p><strong>About the ThermaFLEX project</strong></p> <p>This is exactly what the lead project "ThermaFLEX" is dealing with within the showcase region "Green Energy Lab". No fewer than 27 project partners (district heating network operators, technology providers and research institutions) are working on the identification, simulation-based planning and evaluation of flexibility measures. Concrete implementations are monitored and optimized over the long term. The focus is on <strong>seven demonstrators</strong> in district heating supply areas of small, medium and large cities.</p> <p><strong>Our role in the project</strong></p> <p>BEST - Bioenergy and Sustainable Technologies GmbH is mainly responsible for the optimized operation of the interconnection of several smaller local heating networks in the demo project <strong>"100% Renewable District Heating Leibnitz".</strong></p> <p>The aim is to make optimum use of waste heat from a rendering plant by supplying a neighboring local heating network at times when there is a surplus. If, on the other hand, there is not enough waste heat available, ecological heat from biomass should help to avoid the use of the fossil peak load boiler.</p> <p>The optimal management of thermal storage in each network requires forecasting methods to estimate the expected heat demand as well as the available waste heat. Optimization algorithms based on these ensure that not too little or unnecessarily much heat is exchanged between the networks and that operation is optimized both ecologically and economically for both operators.</p> <p>Final report: <a href="https://greenenergylab.at/wp-content/uploads/2023/09/thermaflex-publizierbarer-endbericht-eng-barrierefrei-final.pdf" target="_blank">https://greenenergylab.at/wp-content/uploads/2023/09/thermaflex-publizierbarer-endbericht-eng-barrierefrei-final.pdf</a></p> ', 'image_1' => '/webroot/files/image/Projektseite/03_Wa%CC%88rmetauscher_Abwa%CC%88rmeauskopplung-TKV-Quelle_Bioenergie-Leibnitzerfeld-GmbH_klein.jpg', 'image_1_caption_de' => 'Wärmetauscher Abwäermeauskopplung TKV', 'image_1_caption_en' => 'Wärmetauscher Abwäermeauskopplung TKV', 'image_1_credits_de' => '© Bioenergie-Leibnitzerfeld GmbH', 'image_1_credits_en' => '© Bioenergie-Leibnitzerfeld GmbH', 'image_2' => '/webroot/files/image/Projektseite/02_TKV-Gel%C3%A4nde-mit-FW-Zentrale-rechts-unten_1-Quelle_Bioenergie-Leibnitzerfeld-GmbH.jpg', 'image_2_caption_de' => 'TKV Gelände mit FW Zentrale', 'image_2_caption_en' => 'TKV Gelände mit FW Zentrale', 'image_2_credits_de' => '© Bioenergie-Leibnitzerfeld GmbH', 'image_2_credits_en' => '© Bioenergie-Leibnitzerfeld GmbH', 'image_3' => '/webroot/files/image/Projektseite/Thermaflex%20Logo.jpg', 'image_3_caption_de' => 'Wärmetauscher Abwäermeauskopplung TKV', 'image_3_caption_en' => 'Wärmetauscher Abwäermeauskopplung TKV', 'image_3_credits_de' => 'Logo ThermaFlex', 'image_3_credits_en' => 'Logo ThermaFlex', 'logos' => '<p>AEE INTEC (Koordinator)</p> <p>FH JOANNEUM <a href="http://www.fh-joanneum.at" target="_blank">www.fh-joanneum.at</a><br /> StadtLABOR Innovationen für urbane Lebensqualität GmbH <a href="http://www.stadtlaborgraz.at" target="_blank">www.stadtlaborgraz.at</a><br /> Technische Universität Graz - Institut für Wärmetechnik <a href="http://www.tugraz.at" target="_blank">www.tugraz.at</a><br /> Stadtwerke Gleisdorf GmbH <a href="http://www.stadtwerke-gleisdorf.at" target="_blank">www.stadtwerke-gleisdorf.at</a><br /> S.O.L.I.D. Gesellschaft für Solarinstallation und Design m.b.H. <a href="http://www.solid.at" target="_blank">www.solid.at</a><br /> WIEN ENERGIE GmbH <a href="http://www.wienenergie.at" target="_blank">www.wienenergie.at</a><br /> Technische Universität Wien - Institut für Energiesysteme und Elektrische Antriebe <a href="http://www.tuwien.at" target="_blank">www.tuwien.at</a><br /> Feistritzwerke-STEWEAG-GmbH <a href="http://www.feistritzwerke.at" target="_blank">www.feistritzwerke.at</a><br /> JOANNEUM RESEARCH Forschungsgesellschaft mbH <a href="http://www.joanneum.at" target="_blank">www.joanneum.at</a><br /> AIT Austrian Institute of Technology GmbH <a href="http://www.ait.ac.at" target="_blank">www.ait.ac.at</a><br /> Salzburg AG für Energie, Verkehr und Telekommunikation <a href="http://www.salzburg-ag.at" target="_blank">www.salzburg-ag.at</a><br /> Rotreat Abwasserreinigung GmbH <a href="http://www.rotreat.at" target="_blank">www.rotreat.at</a><br /> SIR – Salzburger Institut für Raumordnung und Wohnen <a href="http://www.salzburg.gv.at/sir" target="_blank">www.salzburg.gv.at/sir</a><br /> Alois Haselbacher Gesellschaft m.b.H.<a href="http://www.haselbacher.at" target="_blank"> www.haselbacher.at</a><br /> Energie Steiermark AG <a href="http://www.energie-steiermark.at" target="_blank">www.energie-steiermark.at</a><br /> Horn Consult<br /> ENAS Energietechnik und Anlagenbau GmbH <a href="http://www.enas.at" target="_blank">www.enas.at</a><br /> Pink GmbH <a href="http://www.pink.co.at" target="_blank">www.pink.co.at</a><br /> GREENoneTEC Solarindustrie GmbH <a href="http://www.greenonetec.com" target="_blank">www.greenonetec.com</a><br /> STM Schweißtechnik Meitz eU <a href="http://www.stm-meitz.at" target="_blank">www.stm-meitz.at</a><br /> Green Tech Cluster Styria GmbH <a href="http://www.stm-meitz.at" target="_blank">www.greentech.at</a><br /> FRIGOPOL Kälteanlagen GmbH <a href="http://www.frigopol.com" target="_blank">www.frigopol.com</a><br /> Abwasserverband Gleisdorfer Becken <a href="http://www.awv-gleisdorf.at" target="_blank">www.awv-gleisdorf.at</a><br /> Schneid Gesellschaft m.b.H. <a href="http://www.schneid.at" target="_blank">www.schneid.at</a><br /> Nahwärme Tillmitsch GmbH & Co KG <a href="http://www.haselbacher.at/nahwaerme" target="_blank">www.haselbacher.at/nahwaerme</a></p> ', 'finanzierung' => '<p>FFG</p> <p>Programm “Vorzeigeregion Energie” als Initiative des Klima- und Energiefonds Österreich und des Bundesministerium für Verkehr, Innovation und Technologie</p> ', 'active' => true, 'created' => null, 'modified' => null, 'projektvolumen' => 'EUR 4,578.347,--', 'project' => object(App\Model\Entity\Project) { 'Nummer' => (int) 572, 'Projektnummer' => 'N421240', 'Kurzbezeichnung' => 'THERMAFLEX', 'Kurzbezeichnung_en' => '', 'Oeffentlich' => '1', 'Projektname' => 'Thermaflex', 'Projektname_en' => 'Thermaflex', 'Projektleitung' => (int) 1062, 'Start' => object(Cake\I18n\FrozenDate) { 'time' => '2018-11-01 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'Ende' => object(Cake\I18n\FrozenDate) { 'time' => '2022-11-01 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'publications' => [ (int) 0 => object(App\Model\Entity\Publication) { 'id' => (int) 1341, 'titel' => 'Application of Optimization-based Energy Management Systems for Interconnected District Heating Networks', 'subtitel' => '', 'autor' => 'Kaisermayer V, Muschick D, Gölles M, Rosegger W, Binder J, Kelz J. ', 'herausgeber' => '', 'jahr' => (int) 2022, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 1, 'publications_subcategory_id' => (int) 1, 'issn' => '', 'copyright' => '', 'citation' => 'Kaisermayer V, Muschick D, Gölles M, Rosegger W, Binder J, Kelz J. Application of Optimization-based Energy Management Systems for Interconnected District Heating Networks. 22. Styrian Workshop on Automatic Control. 6 Sep. 2022. Leitring/Wagna, Österreich.', 'abstract' => '', 'pdf_file' => 'files/publications/KaisermayerV%20et%20al.%20-%20Retzhof22.pdf', 'hyperlink' => 'https://www.tugraz.at/fileadmin/user_upload/Institute/IRT/Retzhof/Book_of_Abstracts_2022.pdf', 'downloadbar' => true, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-03-29 13:49:20.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-03-29 13:49:20.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1049, 'project_id' => (int) 572, 'publication_id' => (int) 1341, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 1 => object(App\Model\Entity\Publication) { 'id' => (int) 1385, 'titel' => 'Automatic thermal model identification and distributed optimisation for load shifting in city quarters', 'subtitel' => '', 'autor' => 'Moser A, Kaisermayer V, Muschick D, Zemann C, Gölles M, Hofer A, Brandl D, Heimrath R, Mach T, Ribas Tugores C, Ramschak T', 'herausgeber' => '', 'jahr' => (int) 2023, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 9, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => 'Open Access', 'citation' => 'Moser A, Kaisermayer V, Muschick D, Zemann C, Gölles M, Hofer A, Brandl D, Heimrath R, Mach T, Ribas Tugores C, Ramschak T. Automatic thermal model identification and distributed optimisation for load shifting in city quarters, International Journal of Sustainable Energy, 2023;42:1, 1063-1078, DOI: 10.1080/14786451.2023.2246079 ', 'abstract' => '<p>Buildings with floor heating or thermally activated building structures offer significant potential for shifting the thermal load and thus reduce peak demand for heating or cooling. This potential can be realised with the help of model predictive control (MPC) methods, provided that sufficiently descriptive mathematical models of the thermal characteristics of the individual thermal zones exist. Creating these by hand is infeasible for larger numbers of zones; instead, they must be identified automatically based on measurement data. In this paper an approach is presented that allows automatically identifying thermal models usable in MPC. The results show that the identified zone models are sufficiently accurate for the use in an MPC, with a mean average error below 1.5K for the prediction of the zone temperatures. The identified zone models are then used in a distributed optimisation scheme that coordinates the individual zones and buildings of a city quarter to best support an energy hub by flattening the overall load profile. In a preliminary simulation study carried out for buildings with floor heating, the operating costs for heating in a winter month were reduced by approximately 9%. Therefore, it can be concluded that the proposed approach has a clear economic benefit.</p> ', 'pdf_file' => '', 'hyperlink' => 'https://doi.org/10.1080/14786451.2023.2246079', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-29 13:00:52.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-29 13:00:52.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1050, 'project_id' => (int) 572, 'publication_id' => (int) 1385, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 2 => object(App\Model\Entity\Publication) { 'id' => (int) 1224, 'titel' => 'Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern', 'subtitel' => '', 'autor' => 'Zemann C, Muschick D, Kaisermayer V, Gölles M.', 'herausgeber' => '', 'jahr' => (int) 2021, 'datum_publikation' => '', 'publications_type_id' => (int) 2, 'publications_category_id' => (int) 14, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Zemann C, Muschick D, Kaisermayer V, Gölles M. Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern. QM Heizwerke Fachtagung, Bad Vöslau, 14. Oktober, 2021. (oral presentation) ', 'abstract' => '<p style="text-align:justify"><strong>Warum ist es sinnvoll, Wärmenetze zu verbinden?</strong></p> <ul> <li style="text-align: justify;">Erläuterung am Beispiel des Projekts Thermaflex</li> <li style="text-align: justify;">Drei Wärmenetze bei Leibnitz in der Steiermark.</li> <li style="text-align: justify;">Sind gewachsen und haben die Grenzen ihrer Nachbar-Wärmenetze erreicht.</li> <li style="text-align: justify;">Die Wärmenetze werden durch <strong>zwei</strong> <strong>getrennte</strong> <strong>Eigentümer</strong> betrieben.</li> </ul> ', 'pdf_file' => 'files/publications/pdf/qmHW-Fachtagung%20-%2020211014%20-%20Betrieb%20verbundener%20Nahw%C3%A4rmenetze%20mit%20getrennten%20Eigent%C3%BCmern.pdf', 'hyperlink' => '', 'downloadbar' => true, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2021-12-02 08:56:19.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2021-12-02 08:56:19.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1051, 'project_id' => (int) 572, 'publication_id' => (int) 1224, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 3 => object(App\Model\Entity\Publication) { 'id' => (int) 1214, 'titel' => 'Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization', 'subtitel' => '', 'autor' => 'Muschick D, Gölles M, Kaisermayer V, Horn M. ', 'herausgeber' => '', 'jahr' => (int) 2021, 'datum_publikation' => '', 'publications_type_id' => (int) 2, 'publications_category_id' => (int) 14, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Muschick D, Gölles M, Kaisermayer V, Horn M. Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization.17th International Symposium on District Heating and Cooling. Nottingham Trent University, Nottingham, United Kingdom. 7. Sep 2021. Oral Presentation. [online]', 'abstract' => '<p>The simultaneous operation of multiple connected heating networks can be handled by optimization techniques. However, a global optimum might not represent a good operating strategy if the networks belong to different owners and thus might habe competing interests. An approach from game theory then needs to be applied, which finds a generalized Nash equilibrium instead.</p> ', 'pdf_file' => 'files/publications/G%C3%B6lles/2021Muschick%20-%20DHC2021%20-%20Operation%20of%20Coupled%20Multi-Owner%20District%20heating%20Networks%20via%20Distributed%20Optimization.pdf', 'hyperlink' => '', 'downloadbar' => true, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2021-09-13 10:05:09.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2021-09-13 10:05:09.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1052, 'project_id' => (int) 572, 'publication_id' => (int) 1214, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 4 => object(App\Model\Entity\Publication) { 'id' => (int) 1222, 'titel' => 'Operation of coupled multi-owner district heating networks via distributed optimization', 'subtitel' => '', 'autor' => 'Kaisermayer V, Muschick D, Horn M, Gölles M. ', 'herausgeber' => '', 'jahr' => (int) 2021, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 9, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Kaisermayer V, Muschick D, Horn M, Gölles M. Operation of coupled multi-owner district heating networks via distributed optimization. Energy Reports. 2021 Okt;7(Suppl. 4):273-281. https://doi.org/10.1016/j.egyr.2021.08.145 ', 'abstract' => '<p>The growth of district heating and cooling (DHC) networks introduces the possibility of connecting them with neighbouring networks. Coupling networks can save costs by reducing operating hours of peak load or backup boilers, or free up production capacity for network expansion. Optimization-based <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/energy-management-system" title="Learn more about energy management systems from ScienceDirect's AI-generated Topic Pages">energy management systems</a> (EMS) already provide operators of individual DHC networks with solutions to the unit commitment and <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/economic-dispatch-problem" title="Learn more about economic dispatch problem from ScienceDirect's AI-generated Topic Pages">economic dispatch problem</a>. They are especially useful for complex networks with multiple producers and integrated <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/renewable-energy-source" title="Learn more about renewable energy sources from ScienceDirect's AI-generated Topic Pages">renewable energy sources</a>, where incorporating forecasts is important. Time-dependent constraints and network capacity limitations can easily be considered. For coupled networks, a centralized optimization would provide a minimum with respect to an objective function which can incorporate fuel costs, operational costs and costs for emissions. However, the individual coupled networks are generally owned by different organizations with competing objectives. The centralized solution might not be accepted, as each company aims to optimize its own objective. Additionally, all data has to be shared with a centralized EMS, and it represents a single point of failure. A decentralized EMS may therefore be a better choice in a multi-owner setting. In this article, a novel decentralized EMS is presented that can handle multi-owner structures with cooperative and non-cooperative coupling. Each local EMS solves its own optimization problem, and an iterative Jacobi-style algorithm ensures consensus among the networks. The distributed EMS is compared to a centralized EMS based on a representative real-world example consisting of three coupled district heating networks operated by two companies.</p> ', 'pdf_file' => '', 'hyperlink' => 'https://doi.org/10.1016/j.egyr.2021.08.145', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2021-10-29 12:33:15.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2021-10-29 12:33:15.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1053, 'project_id' => (int) 572, 'publication_id' => (int) 1222, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 5 => object(App\Model\Entity\Publication) { 'id' => (int) 1213, 'titel' => 'Optimal operation of cross-ownership district heating and cooling networks', 'subtitel' => '', 'autor' => 'Muschick D, Kaisermayer V, Gölles M, Horn M.', 'herausgeber' => '', 'jahr' => (int) 2021, 'datum_publikation' => '', 'publications_type_id' => (int) 2, 'publications_category_id' => (int) 14, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Muschick D, Kaisermayer V, Gölles M, Horn M.Optimal operation of cross-ownership district heating and cooling networks. 20th European Roundtable on Sustainable Consumption and Production. 9. Sep 2021. Graz. Oral Presentation. ', 'abstract' => '', 'pdf_file' => 'files/publications/G%C3%B6lles/2021Muschick%20-%20ERSCP%20-%20Optimal%20operation%20of%20cross-ownership%20district%20heating%20and%20cooling%20networks.pdf', 'hyperlink' => '', 'downloadbar' => true, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2021-09-13 10:00:38.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2021-09-13 10:00:38.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1054, 'project_id' => (int) 572, 'publication_id' => (int) 1213, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 6 => object(App\Model\Entity\Publication) { 'id' => (int) 1247, 'titel' => 'Optimal operation of cross-ownership district heating and cooling networks', 'subtitel' => '', 'autor' => 'Kaisermayer V, Muschick D, Gölles M, Horn M. ', 'herausgeber' => '', 'jahr' => (int) 2021, 'datum_publikation' => '', 'publications_type_id' => (int) 2, 'publications_category_id' => (int) 2, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Kaisermayer V, Muschick D, Gölles M, Horn M. Optimal operation of cross-ownership district heating and cooling networks. 17th International Symposium on District Heating and Cooling: DHC 2021. 7 Sep 2021. Oral presentation. ', 'abstract' => '', 'pdf_file' => '', 'hyperlink' => '', 'downloadbar' => false, 'active' => false, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2022-04-15 10:09:52.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2022-08-17 07:39:32.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1055, 'project_id' => (int) 572, 'publication_id' => (int) 1247, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 7 => object(App\Model\Entity\Publication) { 'id' => (int) 1245, 'titel' => 'Smart control of interconnected district heating networks on the example of “100% Renewable District Heating Leibnitz”', 'subtitel' => '', 'autor' => 'Kaisermayer V, Binder J, Muschick D, Beck G, Rosegger W, Horn M, Gölles M, Kelz J, Leusbrock I.', 'herausgeber' => '', 'jahr' => (int) 2022, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 9, 'publications_subcategory_id' => (int) 1, 'issn' => '', 'copyright' => '', 'citation' => 'Kaisermayer V, Binder J, Muschick D, Beck G, Rosegger W, Horn M, Gölles M, Kelz J, Leusbrock I. Smart control of interconnected district heating networks on the example of “100% Renewable District Heating Leibnitz”. Smart Energy. 2022 Apr 7. 100069. https://doi.org/10.1016/j.segy.2022.100069 ', 'abstract' => '<div class="abstract author-highlights"> <p>District heating (DH) networks have the potential for intelligent integration and combination of <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/renewable-energy-source" title="Learn more about renewable energy sources from ScienceDirect's AI-generated Topic Pages">renewable energy sources</a>, waste heat, thermal energy storage, heat consumers, and coupling with other sectors. As cities and municipalities grow, so do the corresponding networks. This growth of district heating networks introduces the possibility of interconnecting them with neighbouring networks. Interconnecting formerly separated DH networks can result in many advantages concerning flexibility, overall efficiency, the share of renewable sources, and security of supply. Apart from the problem of hydraulically connecting the networks, the main challenge of interconnected <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/district-heating-system" title="Learn more about DH systems from ScienceDirect's AI-generated Topic Pages">DH systems</a> is the coordination of multiple feed-in points. It can be faced with control concepts for the overall DH system which define optimal operation strategies. This paper presents two control approaches for interconnected DH networks that optimize the supply as well as the demand side to reduce CO<sub>2</sub> emissions. On the supply side, an optimization-based <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/energy-management-system" title="Learn more about energy management system from ScienceDirect's AI-generated Topic Pages">energy management system</a> defines operation strategies based on <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/demand-forecast" title="Learn more about demand forecasts from ScienceDirect's AI-generated Topic Pages">demand forecasts</a>. On the demand side, the operation of consumer <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/substations" title="Learn more about substations from ScienceDirect's AI-generated Topic Pages">substations</a> is influenced in favour of the supply using <a class="topic-link" href="https://www.sciencedirect.com/topics/earth-and-planetary-sciences/demand-side-management" title="Learn more about demand side management from ScienceDirect's AI-generated Topic Pages">demand side management</a>. The proposed approaches were tested both in simulation and in a real implementation on the DH network of Leibnitz, Austria. First results show a promising reduction of CO<sub>2</sub> emissions by 35% and a fuel cost reduction of 7% due to better utilization of the production capacities of the overall DH system.</p> </div> ', 'pdf_file' => '', 'hyperlink' => 'https://www.sciencedirect.com/science/article/pii/S2666955222000077?via%3Dihub', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2022-04-15 09:05:19.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2022-04-15 09:07:20.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1056, 'project_id' => (int) 572, 'publication_id' => (int) 1245, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-10-18 14:08:56.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 8 => object(App\Model\Entity\Publication) { 'id' => (int) 1391, 'titel' => 'Distributed Optimization Methods for Energy Management Systems', 'subtitel' => '', 'autor' => 'Valentin Kaisermayer', 'herausgeber' => '', 'jahr' => (int) 2023, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 18, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Kaisermayer V. Distributed Optimization Methods for Energy Management Systems. 2023.', 'abstract' => '<p>Efficient control of energy systems is an important factor in achieving the CO2-emission goals. District heating (DH) networks are an especially relevant example of such energy systems. State-of-the-art control of small and medium-sized DH networks, however, still mainly relies on simple rule-based control concepts. Handling future challenges such as varying prices and intermittent renewable production is difficult to achieve with such control concepts. Optimization-based energy management systems (EMS) are a promising high-level control approach for the efficient operation of DH networks and complex energy systems in general. An especially interesting challenge arises when DH networks grow, as often the opportunity arises to interconnect them. However, if they operated by different owners, the control task becomes challenging, especially for optimization-based EMS. This is because, in the overall objective function, the cost and revenue for any exchange of energy would cancel out. This thesis presents a solution to this challenge. The main focus of this thesis is on the application of distributed optimization methods for EMS in the context of coupled energy systems, operated by multiple owners, especially interconnected DH networks. The presented methods and ideas are evaluated on a practical application of three DH networks in Austria. </p> ', 'pdf_file' => '', 'hyperlink' => '', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-11-15 15:22:12.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2024-03-06 15:24:11.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1101, 'project_id' => (int) 572, 'publication_id' => (int) 1391, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2024-03-06 15:24:11.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2024-03-06 15:24:11.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' } ], 'employee' => object(App\Model\Entity\Employee) { 'Nummer' => (int) 1062, 'Kurzzeichen' => 'DanMUS', 'Mitarbeiternummer' => '348', 'anstellungsdaten_id' => (int) 1729, 'geschlecht' => 'm', 'pronomen' => '', 'Vorname' => 'Daniel', 'Nachname' => 'MUSCHICK', 'TelFirma' => '+43 5 02378-9248', 'TelFirmaMobil' => null, 'TelFirmaMobil_public' => false, 'email' => 'daniel.muschick@best-research.eu', 'id' => (int) 1729, 'mitarbeiter_id' => (int) 1062, 'anstellung' => object(Cake\I18n\FrozenDate) { 'time' => '2015-03-01 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'anstellung_ende' => object(Cake\I18n\FrozenDate) { 'time' => '2043-12-31 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'anstellung_art' => 'DV', 'anstellung_ort' => 'GR', 'arbeit_ort' => 'GR', 'area_id' => (int) 35, 'intern' => '1', 'gruppe' => (int) 10, 'anzeige_homepage' => '', 'gruppe_pm_tool' => '0', 'karenzierung_grund' => null, 'karenzierung_urlaubsanspruch' => false, 'kostenstelle' => (int) 0, 'kostenstelle_neu' => (int) 0, 'auf_homepage_verstecken' => false, 'Titel' => 'DI Dr.', 'neuanstellung' => false, 'karenzgrund' => null, 'Bezeichnung' => null, 'Bezeichnung_0' => null, 'stundenumfang' => (float) 38.5, 'xing' => 'https://www.xing.com/profile/Daniel_Muschick', 'xing_public' => true, 'linkedin' => 'https://www.linkedin.com/in/daniel-muschick-b5165384', 'linkedin_public' => true, 'scopus' => '', 'scopus_public' => false, 'orcid' => 'https://orcid.org/0000-0001-5945-8874', 'orcid_public' => true, 'mendeley' => '', 'mendeley_public' => false, 'googlescholar' => '', 'googlescholar_public' => false, 'researchgate' => 'https://www.researchgate.net/profile/Daniel-Muschick', 'researchgate_public' => true, 'pure' => 'https://graz.pure.elsevier.com/de/persons/daniel-muschick', 'pure_public' => true, 'full_name' => 'MUSCHICK Daniel', '[new]' => false, '[accessible]' => [ '*' => true, 'Nummer' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [ (int) 0 => 'full_name' ], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Employees' }, 'project_area' => null, 'display_name' => 'N421240 - THERMAFLEX', '[new]' => false, '[accessible]' => [ '*' => true, 'Nummer' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [ (int) 0 => 'project_area', (int) 1 => 'display_name' ], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Projects' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Projectscontent' }
ThermaFLEX: Thermal demand and supply as flexible elements of future sustainable energy systems
Mehr Flexibilität für mehr Erneuerbare in der netzgebundenen Wärmeversorgung – das Leitprojekt „ThermaFLEX“
Ausgangslage
Bei aktuellen Diskussionen um die Dekarbonisierung der Energieversorgung ist vielen nicht bewusst, dass der Bedarf für Raumklima und Warmwasser z.B. im Jahr 2019 rund 27% des Gesamtenergiebedarfs Österreichs ausgemacht hat1. Ein Viertel davon wird über netzgebundene Wärmeversorgung bereitgestellt, womit der Nah- und Fernwärmesektor eine zentrale Rolle in der Energieversorgung Österreichs spielt.
Dessen Entwicklung in Richtung mehr Nachhaltigkeit wird zu einer erhöhten Systemkomplexität führen durch:
- die Integration großer Anteile an erneuerbaren, mitunter volatilen Energieträgern,
- Sektorkopplung mit dem Strom- und Gasnetz,
- dezentralisierte Energieumwandlungsstrukturen.
Gleichzeitig müssen aber die Versorgungssicherheit gewahrt die Energiekosten für die Endkunden erschwinglich bleiben. Das kann nur durch eine erhöhte Flexibilität des Gesamtsystems und ein intelligentes Zusammenspiel der Elemente erreicht werden.
Das Projekt ThermaFLEX
Genau damit beschäftigt sich das Leitprojekt „ThermaFLEX“2 innerhalb der Vorzeigeregion „Green Energy Lab“3. Nicht weniger als 27 Projektpartner (Fernwärmenetzbetreiber, Technologieanbieter und Forschungseinrichtungen) bearbeiten die Identifikation, die simulationsgestützte Planung und Bewertung von Flexibilisierungsmaßnahmen. Konkrete Umsetzungen werden langfristig beobachtet und optimiert. Im Fokus stehen dabei sieben Demonstratoren in Fernwärmeversorgungsgebieten von kleinen, mittleren und großen Städten.
Unsere Rolle im Projekt
Die BEST – Bioenergy and Sustainable Technologies GmbH ist maßgeblich für den optimierten Betrieb des Zusammenschlusses mehrerer kleinerer Nahwärmenetze im Demonstrator „100% Renewable District Heating Leibnitz“4 verantwortlich.
Dabei geht es darum, Abwärme aus einer Tierkörperverwertung optimal nutzbar zu machen, indem zu Zeiten mit Überschuss benachbarte Nahwärmenetze mitversorgt werden. Steht hingegen nicht genug Abwärme zur Verfügung, soll ökologische Wärme aus Biomasse aus anderen Netzen den Einsatz des fossilen Spitzenlastkessels vermeiden helfen.
Die optimale Bewirtschaftung der thermischen Speicher in jedem Netzwerk erfordert Prognosemethoden, um den erwarteten Verbrauch sowie die zur Verfügung stehende Abwärme abschätzen zu können. Darauf aufbauende Optimierungsalgorithmen stellen sicher, dass nicht zu wenig oder unnötig viel Wärme zwischen den Netzwerken ausgetauscht und der Betrieb sowohl ökologisch als auch für beide Betreiber ökonomisch optimiert wird.
______________________________________________________________________________
2 https://thermaflex.greenenergylab.at/thermaflex/
4 https://greenenergylab.at/projects/100-renewable-district-heating-leibnitz/
Weitere Informationen
https://thermaflex.greenenergylab.at/
https://greenenergylab.at/projects/thermaflex/
Presseaussendung
https://www.best-research.eu/webroot/files/file/20211007_Pressetext_Thermaflex%20(002).pdf
Projektvolumen
EUR 4,578.347,--
Projektlaufzeit
2018-11-01 - 2022-11-01
Finanzierung
FFG Programm “Vorzeigeregion Energie” als Initiative des Klima- und Energiefonds Österreich und des Bundesministerium für Verkehr, Innovation und Technologie
Projektpartner
AEE INTEC (Koordinator)
FH JOANNEUM www.fh-joanneum.at
StadtLABOR Innovationen für urbane Lebensqualität GmbH www.stadtlaborgraz.at
Technische Universität Graz - Institut für Wärmetechnik www.tugraz.at
Stadtwerke Gleisdorf GmbH www.stadtwerke-gleisdorf.at
S.O.L.I.D. Gesellschaft für Solarinstallation und Design m.b.H. www.solid.at
WIEN ENERGIE GmbH www.wienenergie.at
Technische Universität Wien - Institut für Energiesysteme und Elektrische Antriebe www.tuwien.at
Feistritzwerke-STEWEAG-GmbH www.feistritzwerke.at
JOANNEUM RESEARCH Forschungsgesellschaft mbH www.joanneum.at
AIT Austrian Institute of Technology GmbH www.ait.ac.at
Salzburg AG für Energie, Verkehr und Telekommunikation www.salzburg-ag.at
Rotreat Abwasserreinigung GmbH www.rotreat.at
SIR – Salzburger Institut für Raumordnung und Wohnen www.salzburg.gv.at/sir
Alois Haselbacher Gesellschaft m.b.H. www.haselbacher.at
Energie Steiermark AG www.energie-steiermark.at
Horn Consult
ENAS Energietechnik und Anlagenbau GmbH www.enas.at
Pink GmbH www.pink.co.at
GREENoneTEC Solarindustrie GmbH www.greenonetec.com
STM Schweißtechnik Meitz eU www.stm-meitz.at
Green Tech Cluster Styria GmbH www.greentech.at
FRIGOPOL Kälteanlagen GmbH www.frigopol.com
Abwasserverband Gleisdorfer Becken www.awv-gleisdorf.at
Schneid Gesellschaft m.b.H. www.schneid.at
Nahwärme Tillmitsch GmbH & Co KG www.haselbacher.at/nahwaerme
Ansprechperson
Daniel MUSCHICK
daniel.muschick@best-research.eu
Area Management
Markus GÖLLES
markus.goelles@best-research.eu
Publikationen
Betrieb verbundener Nahwärmenetze mit getrennten Eigentümern
Operation of Coupled Multi-Owner District Heating Networks via Distributed Optimization
Operation of coupled multi-owner district heating networks via distributed optimization
Optimal operation of cross-ownership district heating and cooling networks
Distributed Optimization Methods for Energy Management Systems