Publication | Reviewed Conference Papers | Potentiale, Bioenergiesysteme, Logistik
Flexibilization of industrial energy systems by optimization-based demand side management
Bernd Riederer, Valentin Kaisermayer, Sebastian Dietze, Daniel Muschick, Martin Puster, Kerstin Pfleger-Schopf and Markus Gölles
Published 2024
Citation: Bernd Riederer, Valentin Kaisermayer, Sebastian Dietze, Daniel Muschick, Martin Puster, Kerstin Pfleger-Schopf and Markus Gölles, „Flexibilization of industrial energy systems by optimization-based demand side management”, in Conference Proceedings NEFI NEW ENERGY FOR INDUSTRY 2024, MuseumsQuartier, Vienna, Okt. 2024. pp. 36-38, [Online]. doi: 10.5281/zenodo.13985900.
Abstract
The increasing share of volatile energy sources as well as variable demands provide challenges for the electrical power grid. To counteract these instabilities a balance between supply and demand needs to be established. In industrial processes, this can be achieved by coordinating the energy production with local storage and demand. Specifically, the optimized scheduling of batch production processes can avoid peak loads. A holistic approach for the control of industrial energy systems and production processes is needed to use this flexibility. This contribution presents an extension to a modular framework for optimization-based, predictive supervisory control of multi-energy systems providing the possibility to incorporate batch production processes, and a first study showing that shifting production processes can result in a more resource- and cost-efficient process.