Publication | Other papers

Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier

Published 2013

Citation: Wilk V, Hofbauer H. Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Process Technol. 2013;115:139-51.

Abstract

The influence of the distribution of fuel particle size on steam gasification was studied systematically in a dual fluidized bed gasifier. Pilot plant gasification experiments have been conducted using sawdust and pellets produced from the same raw material. Three different kinds of waste wood with a broad particle size distribution were also considered for comparison. The fuels differ in their content of particles smaller than 1 mm of equivalent diameter. With an increasing proportion of particles smaller than 1 mm, the product gas contained less H2 and more CO and CH4. Less product gas was generated and the concentration of tar increased. It is observed that entrainment of small fuel particles plays an important role in the dual fluidized bed gasifier. Based on the superficial gas velocity in the freeboard of the gasification reactor, a limiting diameter for the entrainment of fuel particles can be determined. Under the conditions investigated a total of 22 wt.% of fuel particles present in the mixture of sawdust and pellets was entrained very rapidly after feeding because of their size. They mainly devolatilize in the freeboard and only have limited contact with the catalytic bed material. Therefore, these volatiles are less likely to be reformed and more tar is found in the product gas. As a conclusion, the particle size determines the region where the thermal conversion of the fuel particle mainly takes place: within the fluidized bed or in the freeboard. © 2013 Elsevier B.V.
 

External Link


Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite