Publication | Peer reviewed papers | Potentiale, Bioenergiesysteme, Logistik
Interactions of Olivine and Silica Sand with Potassium- or Silicon-Rich Agricultural Residues under Combustion, Steam Gasification, and CO2 Gasification
Published 6 October
Citation: Li G, Nathan GJ, Kuba M, Ashman PJ, Saw WL. Interactions of Olivine and Silica Sand with Potassium- or Silicon-Rich Agricultural Residues under Combustion, Steam Gasification, and CO2 Gasification. Industrial and Engineering Chemistry Research. 6 October 2021. 60 (39):14354 - 14369.
Abstract
Interactions between olivine or silica sand and potassium (K)-rich grape marc or silicon (Si)-rich wheat straw were studied in a fixed-bed reactor under combustion, steam, or a CO2 gasification atmosphere. This study focused on the effects of atmosphere composition, feedstock, and bed material type on the thermochemical aspects of agglomeration. The agglomeration extent of grape marc with olivine as the bed material under air and steam atmospheres is significantly less than with silica sand. The presence of CO2, compared to that of O2 or steam, was found to promote the reaction between K and olivine by facilitating the production of reactive silica from olivine carbonization. The use of olivine promotes the release of K by more than 10% compared with silica. No significant differences were observed in the agglomeration extent of wheat straw in its interaction with either olivine or silica sand. Nevertheless, olivine alters the agglomeration mechanism of wheat straw to become “melting-induced” from “coating-induced” in a silica bed.