object(App\Model\Entity\Projectscontent) { 'id' => (int) 379, 'project_id' => (int) 754, 'longtitle_de' => 'DekarbWP: Dekarbonisierung der Wärme- und Kältebereitstellung mittels Absorptions-Wärmepumpanlagen', 'longtitle_en' => 'DekarbWP: Decarbonization of heating and cooling supply by means of absorption heat pump systems', 'content_de' => '<p>Für eine möglichst umweltfreundliche und weitgehend CO2-neutrale Bereitstellung von Wärme und Kälte zeichnet sich der Trend ab, verschiedene Technologien wie erneuerbare Wärmeerzeuger, <strong>Absorptionswärmepumpanlagen (AWPA</strong>, zur Wärme und/oder Kältebereitstellung) und thermische Speicher zu kombinieren. Dabei entstehen zwangsläufig oft komplexe Systeme, deren Dimensionierung und Regelung eine große Herausforderung darstellt.</p> <p>In dem Projekt <strong>DekarbWP</strong> werden Methoden entwickelt, welche die optimale Dimensionierung und die optimale Regelung solcher Systeme mit Absorptionswärmepumpanlagen ermöglichen. Dadurch können diese Systeme<strong> mit hoher Effizienz, geringen Kosten</strong> und <strong>minimalen CO2-Emissionen</strong> betrieben werden, wodurch die <strong>Dekarbonisierung der Wärme- und Kältebereitstellung</strong> in der Steiermark maßgeblich vorangetrieben werden soll. </p> ', 'content_en' => '<p>In order to provide heating and cooling in the most sustainable and CO2-neutral way possible, the trend is emerging to combine different technologies such as renewable heat generators, <strong>absorption heat pumping plants</strong> (comprising heat pumps and chillers) and thermal storages. Inevitably, this often results in complex systems whose dimensioning and control are a major challenge.</p> <p>In the project <strong>DekarbWP</strong> methods are developed, which allow the <strong>optimal dimensionin</strong>g and the <strong>optimal control</strong> of such systems with <strong>absorption heat pumping plants</strong>. As a result, these systems can be operated with <strong>high efficiency, low cos</strong>ts and <strong>minimal CO2 emissions</strong>, which should significantly advance the <strong>decarbonization of heating and cooling supply</strong> in Styria. </p> ', 'image_1' => '', 'image_1_caption_de' => '', 'image_1_caption_en' => '', 'image_1_credits_de' => '', 'image_1_credits_en' => '', 'image_2' => '', 'image_2_caption_de' => '', 'image_2_caption_en' => '', 'image_2_credits_de' => '', 'image_2_credits_en' => '', 'image_3' => '', 'image_3_caption_de' => '', 'image_3_caption_en' => '', 'image_3_credits_de' => '', 'image_3_credits_en' => '', 'logos' => '<p><img alt="" src="/webroot/files/image/Projektseite/Logo%20TU%20Graz.jpg" style="height:157px; width:321px" /></p> <p>Institut für Wärmetechnik</p> ', 'finanzierung' => '<p>Zukunftsfonds Steiermark</p> <p>Ausschreibung: „NEXT GREEN TECH“ Energy Systems, Green Hydrogen & Green Mobility, 14. Ausschreibung des Zukunftsfonds Steiermark</p> <p><img alt="" src="/webroot/files/image/Projektseite/Land%20STMK.jpg" style="height:100px; width:250px" /> <img alt="" src="/webroot/files/image/Projektseite/Zukunftsfonds.jpg" style="height:51px; width:250px" /></p> <p> </p> <p> </p> ', 'active' => true, 'created' => null, 'modified' => null, 'projektvolumen' => 'EUR 283.739,68', 'project' => object(App\Model\Entity\Project) { 'Nummer' => (int) 754, 'Projektnummer' => 'N53254', 'Kurzbezeichnung' => 'DekarbWP', 'Kurzbezeichnung_en' => '', 'Oeffentlich' => '1', 'Projektname' => 'Dekarbonisierung der W�rme-/K�ltebereitstellung mittels Absorptionsw�rmepumpanlagen', 'Projektname_en' => 'Dekarbonisierung der W�rme-/K�ltebereitstellung mittels Absorptionsw�rmepumpanlagen', 'Projektleitung' => (int) 1107, 'Start' => object(Cake\I18n\FrozenDate) { 'time' => '2022-03-01 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'Ende' => object(Cake\I18n\FrozenDate) { 'time' => '2025-05-31 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'publications' => [ (int) 0 => object(App\Model\Entity\Publication) { 'id' => (int) 1334, 'titel' => 'Model-based control of absorption heat pumping systems', 'subtitel' => '', 'autor' => 'Staudt S, Unterberger V, Muschick D, Wernhart M, Rieberer R', 'herausgeber' => '', 'jahr' => (int) 2022, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 2, 'publications_subcategory_id' => (int) 1, 'issn' => '', 'copyright' => '', 'citation' => 'Staudt S, Unterberger V, Muschick D, Wernhart M, Rieberer R. Model-based control of absorption heat pumping systems. 2022. Abstract from 22. Styrian Workshop on Automatic Control, Leitring/Wagna, Austria.', 'abstract' => '<p>Absorption heat pumping systems (AHPSs, comprising absorption heat pumps and chillers) are devices that mainly use thermal energy instead of electricity to generate heating and cooling. This thermal energy can be provided by, e.g., waste heat or renewable energy sources such as solar energy, which allow AHPSs to contribute to ressource-efficient heating and cooling systems. Despite this benefit, AHPSs are still not a widespread technology. One reason for this is unsatisfactory controllability under varying operating conditions, which results in poor modulation and partial load capability. Emloying model-based control is a promising approach to address this issue, which will be the focus of this contribution.<br /> First, a viable control-oriented model for AHPSs is developed. It is based on physical correlations to facilitate systematic adaptions to different scales and operating conditions and considers only the most relevant mass and energy stores to keep the model order at a minimum. The resulting model is mathematically simple but still has the structure of a nonlinear differential-algebraic system of equations. This is typical for models of thermo-chemical<br /> processes, but is unfortunately not suitable for many control design methods. Therefore, linearization at an operating point is discussed to derive a model in linear state space representation. Experimental validation results show that the linearized model does have slightly worse steady-state accuracy than the nonlinear model, but that the dynamic accuracy seems to be almost unaffected by the linearization and is considered sufficiently good to be used in control design.<br /> As a next step, the linearized model is used to design model-based control strategies for AHPSs. A special focus is put on redundantly-actuated configurations, i.e. configurations with more manipulated variables than controlled variables, which allows using additional degrees of freedom to extend the operating range of AHPS and hence improve their partial load capability. Two model-based control approaches are discussed: First, a linear model predictive control (MPC) approach is presented - a well-established and generally easy-to-parameterize approach, which, however, often results in high computational effort prohibitive to its implementation on a conventional PLC. Therefore, a second control approach based on state feedback is presented which is mathematically simple enough for implementation on a conventional PLC. It consists of an observer for state variables and unknown disturbances, a state feedback controller and, in case of redundantly-actuated configurations, a dynamic control allocation algorithm. Both approaches are experimentally validated and compared to a state-of-the art control approach based on SISO PI control, showing that the model-based MIMO control approaches allow for a wider operating range and hence better modulation and partial load capability compared to the SISO PI approach. This, in turn, reduces ON/OFF operation of AHPSs and also facilitates their integration into complex energy systems to generate heating and cooling in a ressource-efficient manner.</p> ', 'pdf_file' => '', 'hyperlink' => 'https://www.tugraz.at/fileadmin/user_upload/Institute/IRT/Retzhof/Book_of_Abstracts_2022.pdf', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-03-28 10:17:21.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-03-28 10:17:21.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 944, 'project_id' => (int) 754, 'publication_id' => (int) 1334, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-05-04 14:08:40.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-05-04 14:08:40.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 1 => object(App\Model\Entity\Publication) { 'id' => (int) 1336, 'titel' => 'Vereinfachung von Absorptionskälteanlagen-Modellen', 'subtitel' => '', 'autor' => 'Wernhart MW, Rieberer R, Staudt S, Unterberger V, Gölles M.', 'herausgeber' => '', 'jahr' => (int) 2022, 'datum_publikation' => '', 'publications_type_id' => (int) 2, 'publications_category_id' => (int) 2, 'publications_subcategory_id' => (int) 1, 'issn' => '', 'copyright' => '', 'citation' => 'Wernhart MW, Rieberer R, Staudt S, Unterberger V, Gölles M. Vereinfachung von Absorptionskälteanlagen-Modellen. Deutsche Kälte- und Klimatagung 2022: DKV-Tagung 2022. 18. November 2022. Magdeburg, Germany.', 'abstract' => '', 'pdf_file' => '', 'hyperlink' => '', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-03-28 10:21:20.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-03-28 10:21:20.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 945, 'project_id' => (int) 754, 'publication_id' => (int) 1336, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-05-04 14:08:40.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-05-04 14:08:40.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 2 => object(App\Model\Entity\Publication) { 'id' => (int) 1382, 'titel' => 'Control-oriented modeling of a LiBr/H2O absorption heat pumping device and experimental validation', 'subtitel' => '', 'autor' => 'Staudt S, Unterberger V, Gölles M, Wernhart M, Rieberer R, Horn M', 'herausgeber' => '', 'jahr' => (int) 2023, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 9, 'publications_subcategory_id' => (int) 1, 'issn' => '', 'copyright' => '', 'citation' => 'Staudt S, Unterberger V, Gölles M, Wernhart M, Rieberer R, Horn M. Control-oriented modeling of a LiBr/H2O absorption heat pumping device and experimental validation. Journal of Process Control. 2023 Aug;128:103024. doi: 10.1016/j.jprocont.2023.103024', 'abstract' => '<p>Absorption heat pumping devices (AHPDs, comprising absorption heat pumps and chillers) are devices that use thermal energy instead of electricity to generate heating and cooling, thereby facilitating the use of waste heat and renewable energy sources such as solar or geothermal energy. Despite this benefit, widespread use of AHPDs is still limited. One reason for this is partly unsatisfactory control performance under varying operating conditions, which can result in poor modulation and part load capability. A promising approach to tackle this issue is using dynamic, model-based control strategies, whose effectiveness, however, strongly depend on the model being used. This paper therefore focuses on the derivation of a viable dynamic model to be used for such model-based control strategies for AHPDs such as state feedback or model-predictive control. The derived model is experimentally validated, showing good modeling accuracy. Its modeling accuracy is also compared to alternative model versions, that contain other heat transfer correlations, as a benchmark. Although the derived model is mathematically simple, it does have the structure of a nonlinear differential–algebraic system of equations. To obtain an even simpler model structure, linearization at an operating point is discussed to derive a model in linear state space representation. The experimental validation shows that the linear model does have slightly worse steady-state accuracy, but that the dynamic accuracy seems to be almost unaffected by the linearization. The presented new modeling approach is considered suitable to be used as a basis for the design of advanced, model-based control strategies, ultimately aiming to improve the modulation and part load capability of AHPDs.</p> ', 'pdf_file' => '', 'hyperlink' => 'https://www.sciencedirect.com/science/article/abs/pii/S0959152423001117?via%3Dihub', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-03 03:59:01.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-03 03:59:01.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1028, 'project_id' => (int) 754, 'publication_id' => (int) 1382, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-03 03:59:01.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-03 03:59:01.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 3 => object(App\Model\Entity\Publication) { 'id' => (int) 1383, 'titel' => 'MIMO state feedback control for redundantly-actuated LiBr/H O absorption heat pumping devices and experimental validation', 'subtitel' => '', 'autor' => 'Staudt S, Unterberger V, Muschick D, Gölles M, Horn M, Wernhart M, Rieberer R', 'herausgeber' => '', 'jahr' => (int) 2023, 'datum_publikation' => '', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 9, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => 'Open Access', 'citation' => 'Staudt S, Unterberger V, Muschick D, Gölles M, Horn M, Wernhart M, Rieberer R. MIMO state feedback control for redundantly-actuated LiBr/H2O absorption heat pumping devices and experimental validation. Control Engineering Practice.2023:140.105661. https://doi.org/10.1016/j.conengprac.2023.105661', 'abstract' => '<p>Absorption heat pumping devices (AHPDs, comprising absorption heat pumps and chillers) use mainly <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/thermal-energy" title="Learn more about thermal energy from ScienceDirect's AI-generated Topic Pages">thermal energy</a> instead of electricity as the driving energy to provide resource-efficient heating and cooling when using waste heat or renewable heat sources. Despite this benefit, AHPDs are still not a very common technology due to their complexity. However, better modulation and part-load capability, which can be achieved through advanced control strategies, can simplify the use of AHPDs and help to better integrate them into complex <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/energy-systems" title="Learn more about energy systems from ScienceDirect's AI-generated Topic Pages">energy systems</a>. Therefore, this paper presents a new, dynamic model-based control approach for single-stage AHPDs that can extend an AHPD’s operating range by employing multi-input-multi-output (MIMO) control methods. The control approach can be used for different AHPD applications and thus <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/configuration-control" title="Learn more about control configurations from ScienceDirect's AI-generated Topic Pages">control configurations</a>, i.e., different combinations of manipulated and controlled variables, and can also be used for redundantly-actuated configurations with more manipulated than controlled variables. It consists of an observer for the state variables and unknown disturbances, a <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/state-feedback-controller" title="Learn more about state feedback controller from ScienceDirect's AI-generated Topic Pages">state feedback controller</a> and, in case of redundantly-actuated configurations, a dynamic control allocation algorithm. The proposed control approach is experimentally validated with a representative AHPD for two different control configurations and compared to two benchmark control approaches – single-input-single-output (SISO) PI control representing the state-of-the-art, and model-predictive control (MPC) as an alternative advanced control concept. The experimental validation shows that the two MIMO control approaches (the proposed state feedback and the MPC approach) allow for a wider operating range and hence better part load capability compared to the SISO PI control approach. While MPC generally results in a comparably high computational effort due to the necessity of continuously solving an optimization problem, the proposed state <a class="topic-link" href="https://www.sciencedirect.com/topics/engineering/feedback-control-systems" title="Learn more about feedback control from ScienceDirect's AI-generated Topic Pages">feedback control</a> approach is mathematically simple enough to be implemented on a conventional programmable logic controller. It is therefore considered a promising new control approach for AHPDs with the ability to extend their operating range and improve their part load capability, which in turn facilitates their implementation and thus the use of sustainable heat sources in heating and cooling systems.</p> ', 'pdf_file' => '', 'hyperlink' => 'https://doi.org/10.1016/j.conengprac.2023.105661', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-22 08:42:01.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-29 09:35:32.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1036, 'project_id' => (int) 754, 'publication_id' => (int) 1383, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-29 09:35:32.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2023-08-29 09:35:32.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 4 => object(App\Model\Entity\Publication) { 'id' => (int) 1404, 'titel' => 'Model-based control of absorption heat pumping devices', 'subtitel' => '', 'autor' => 'Sandra Staudt', 'herausgeber' => '', 'jahr' => (int) 2023, 'datum_publikation' => 'Dez. 2023', 'publications_type_id' => (int) 1, 'publications_category_id' => (int) 18, 'publications_subcategory_id' => (int) 11, 'issn' => '', 'copyright' => '', 'citation' => 'Staudt S. Model-based control of absorption heat pumping devices. 2023. 170 S.', 'abstract' => '<p>Absorptionswärmepumpenanlagen (AWPA, beinhaltet Absorptionswärmepumpen und –kältemaschinen), sind Anlagen, die hauptsächlich thermische statt elektrischer Energie nutzen, um Wärme und Kälte zu generieren. Dadurch wird die Nutzung von Abwärme und erneuerbaren Energiequellen wie Solarenergie in Heiz- und Kühlsystemen erleichtert. Trotz dieses Vorteils ist der Einsatz von AWPA nach wie vor stark eingeschränkt. Ein Grund dafür ist das Fehlen von Regelungsstrategien, die eine zufriedenstellende Regelgüte über einen weiten Betriebsbereich, insbesondere unter Teillast, bieten. Deshalb befasst sich diese Arbeit mit der Entwicklung eines neuen, modellbasierten Regelungsansatzes für AWPA, die den Betriebsbereich durch den Einsatz von Mehrgrößen-Regelungsmethoden (multi-input-multi-output (MIMO) Regelungsmethoden) erweitern kann.<br /> <br /> <br /> <br /> Zunächst wird ein geeignetes dynamisches Modell abgeleitet, das im modellbasierten Regelungsansatz verwendet werden soll. Es handelt sich um ein physikalisch basiertes Modell mit modularer Struktur, was eine systematische Anpassung an verschiedene AWPA erleichtert. Um die Anzahl der Zustandsvariablen niedrig zu halten, werden nur diejenigen Masse- und Energiespeicher berücksichtigt, die zu Zeitkonstanten und Totzeiten führen, die für die spätere Regelungsaufgabe relevant sind. Das entwickelte Modell ist mathematisch einfach, hat jedoch die Struktur eines nichtlinearen differential-algebraischen Gleichungssystems. Als solches ist es sehr gut als Simulationsmodell geeignet um verschiedene Regelungsstrategien in der Simulation zu testen, aber es ist zu komplex für viele modellbasierte Regelungsmethoden. Um eine noch einfachere Modellstruktur zu erhalten, wird das Modell an einem Betriebspunkt linearisiert, was auf ein Modell in linearer Zustandsraumdarstellung führt. Die entwickelten nichtlinearen und linearen Modelle werden experimentell validiert und mit zwei alternativen Modellierungsansätzen als Benchmark verglichen. Ein Vergleich zwischen dem abgeleiteten nichtlinearen Modell und den Benchmark-Modellen zeigt eine höhere Genauigkeit für das neue Modell, sowohl stationär als auch dynamisch. Ein Vergleich zwischen dem abgeleiteten nichtlinearen und dem linearisierten Modell zeigt, dass das linearisierte Modell zwar eine etwas schlechtere stationäre Genauigkeit aufweist, die dynamische Genauigkeit jedoch durch die Linearisierung nahezu unbeeinflusst zu sein scheint. Das vorgestellte neue linearisierte AWPA -Modell gilt daher als geeignet, als Grundlage für den Entwurf des modellbasierten Regelansatzes verwendet zu werden.<br /> <br /> <br /> <br /> Als nächstes wird dieses Modell verwendet, um einen neuen modellbasierten Regelungsansatz für AWPA zu entwerfen. Der neue Regelungsansatz kann für verschiedene AWPA-Anwendungen und damit für verschiedene Regelungskonfigurationen verwendet werden, d.h., verschiedene Kombinationen von Stell- und Regelgrößen. Er kann auch für redundante aktuierte Konfigurationen mit mehr Stell- als Regelgrößen verwendet werden, was die Erweiterung des Betriebsbereichs einer AWPA ermöglicht. Der Ansatz besteht aus einem Beobachter für die Zustandsvariablen und unbekannte Störgrößen, einem Zustandsregler und, im Falle von redundant aktuierten Konfigurationen, einem Algorithmus zur dynamischen Stellgrößenverteilung. Der vorgeschlagene Regelungsansatz wird experimentell für zwei verschiedene Regelungskonfigurationen validiert und mit zwei Benchmark-Ansätzen verglichen – einem Eingrößen-PI-Regler (Single-input-single-output (SISO) PI-Regler), der den Stand der Technik repräsentiert, und einem modellprädiktiven Regelungsansatz (model predictive control, MPC) als alternative fortschrittliche Regelungsmethode. Die experimentelle Validierung zeigt, dass die beiden MIMO-Regelungsansätze (der vorgeschlagene Zustandsregler und der MPC-Ansatz) einen erweiterten Betriebsbereich und somit eine bessere Teillastfähigkeit im Vergleich zum SISO-PI-Regler ermöglichen. Während MPC durch die Notwendigkeit zur kontinuierlichen Lösung eines Optimierungsproblems im Allgemeinen eine vergleichsweise hohe Rechenleistung benötigt, ist der vorgeschlagene Zustandsregler-Ansatz mathematisch einfach genug, um auf herkömmlichen speicherprogrammierbaren Steuerungen für AWPA implementiert werden zu können. Er wird daher als vielversprechender neuer Regelungsansatz für AWPA betrachtet, der die Möglichkeit bietet, ihren Betriebsbereich zu erweitern und ihre Teillastfähigkeit zu verbessern, was wiederum eine einfachere Einbindung in moderne Energiesysteme ermöglicht und somit die Nutzung nachhaltiger Wärmequellen für Heizen und Kühlen erleichtert.</p> ', 'pdf_file' => '', 'hyperlink' => '', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2024-02-27 10:35:25.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2024-03-06 15:28:35.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1102, 'project_id' => (int) 754, 'publication_id' => (int) 1404, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2024-03-06 15:28:35.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2024-03-06 15:28:35.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' }, (int) 5 => object(App\Model\Entity\Publication) { 'id' => (int) 1405, 'titel' => 'Model-Based Control of Absorption Heat Pumping Devices – General Approach and Exemplary Application to Solar Cooling Systems', 'subtitel' => '', 'autor' => 'Sandra Staudt, Viktor Unterberger, Daniel Muschick, Valentin Kaisermayer, Mathias Schwendt, Markus Gölles', 'herausgeber' => '', 'jahr' => (int) 2024, 'datum_publikation' => '', 'publications_type_id' => (int) 2, 'publications_category_id' => (int) 2, 'publications_subcategory_id' => (int) 15, 'issn' => '', 'copyright' => '', 'citation' => 'Staudt S, Unterberger V, Muschick D, Kaisermayer V, Schwendt M, Gölles M. Model-Based Control of Absorption Heat Pumping Devices – General Approach and Exemplary Application to Solar Cooling Systems. 3rd International Sustainable Energy Conference: ISEC 2024. Graz, 10/04/2024. Oral presentation. ', 'abstract' => '<p>Absorption heat pumping devices (AHPDs, comprising heat pumps and chillers) can provide heating and cooling in a resource-efficient manner. However, their perceived complexity has limited their widespread application. This contribution shows how mathematical models, systematically capturing this complexity, can be used for model-based control of AHPDs (on the device-level for model-predictive or state feedback control and on the system-level for optimisation-based energy management systems) to facilitate their integration into energy systems, and discusses an exemplary application to solar cooling systems.</p> ', 'pdf_file' => '', 'hyperlink' => '', 'downloadbar' => false, 'active' => true, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2024-05-07 06:50:46.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2024-05-07 06:50:46.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '_joinData' => object(App\Model\Entity\ProjectsPublication) { 'id' => (int) 1105, 'project_id' => (int) 754, 'publication_id' => (int) 1405, 'created' => object(Cake\I18n\FrozenTime) { 'time' => '2024-05-07 06:50:46.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'modified' => object(Cake\I18n\FrozenTime) { 'time' => '2024-05-07 06:50:46.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'ProjectsPublications' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Publications' } ], 'employee' => object(App\Model\Entity\Employee) { 'Nummer' => (int) 1107, 'Kurzzeichen' => 'SanZLA', 'Mitarbeiternummer' => '393', 'anstellungsdaten_id' => (int) 1962, 'geschlecht' => 'f', 'pronomen' => 'SIE', 'Vorname' => 'Sandra', 'Nachname' => 'STAUDT', 'TelFirma' => '+43 5 02378-9225', 'TelFirmaMobil' => '', 'TelFirmaMobil_public' => false, 'email' => 'sandra.staudt@best-research.eu', 'id' => (int) 1962, 'mitarbeiter_id' => (int) 1107, 'anstellung' => object(Cake\I18n\FrozenDate) { 'time' => '2017-10-02 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'anstellung_ende' => object(Cake\I18n\FrozenDate) { 'time' => '2043-12-31 00:00:00.000000+00:00', 'timezone' => 'UTC', 'fixedNowTime' => false }, 'anstellung_art' => 'DV', 'anstellung_ort' => 'GR', 'arbeit_ort' => 'GR', 'area_id' => (int) 35, 'intern' => '1', 'gruppe' => (int) 10, 'anzeige_homepage' => '', 'gruppe_pm_tool' => '0', 'karenzierung_grund' => null, 'karenzierung_urlaubsanspruch' => false, 'kostenstelle' => (int) 0, 'kostenstelle_neu' => (int) 0, 'auf_homepage_verstecken' => false, 'Titel' => 'BSc. Dipl.-Ing.', 'neuanstellung' => false, 'karenzgrund' => null, 'Bezeichnung' => null, 'Bezeichnung_0' => null, 'stundenumfang' => (float) 35, 'xing' => 'https://www.xing.com/profile/Sandra_Staudt10/cv', 'xing_public' => true, 'linkedin' => 'https://www.linkedin.com/in/sandra-staudt-8a88151b9/', 'linkedin_public' => true, 'scopus' => '', 'scopus_public' => false, 'orcid' => '', 'orcid_public' => false, 'mendeley' => '', 'mendeley_public' => false, 'googlescholar' => '', 'googlescholar_public' => false, 'researchgate' => 'https://www.researchgate.net/profile/Sandra-Zlabinger', 'researchgate_public' => true, 'pure' => 'https://graz.pure.elsevier.com/de/persons/sandra-zlabinger', 'pure_public' => true, 'full_name' => 'STAUDT Sandra', '[new]' => false, '[accessible]' => [ '*' => true, 'Nummer' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [ (int) 0 => 'full_name' ], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Employees' }, 'project_area' => null, 'display_name' => 'N53254 - DekarbWP', '[new]' => false, '[accessible]' => [ '*' => true, 'Nummer' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [ (int) 0 => 'project_area', (int) 1 => 'display_name' ], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Projects' }, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Projectscontent' }
DekarbWP: Dekarbonisierung der Wärme- und Kältebereitstellung mittels Absorptions-Wärmepumpanlagen
Für eine möglichst umweltfreundliche und weitgehend CO2-neutrale Bereitstellung von Wärme und Kälte zeichnet sich der Trend ab, verschiedene Technologien wie erneuerbare Wärmeerzeuger, Absorptionswärmepumpanlagen (AWPA, zur Wärme und/oder Kältebereitstellung) und thermische Speicher zu kombinieren. Dabei entstehen zwangsläufig oft komplexe Systeme, deren Dimensionierung und Regelung eine große Herausforderung darstellt.
In dem Projekt DekarbWP werden Methoden entwickelt, welche die optimale Dimensionierung und die optimale Regelung solcher Systeme mit Absorptionswärmepumpanlagen ermöglichen. Dadurch können diese Systeme mit hoher Effizienz, geringen Kosten und minimalen CO2-Emissionen betrieben werden, wodurch die Dekarbonisierung der Wärme- und Kältebereitstellung in der Steiermark maßgeblich vorangetrieben werden soll.
Projektvolumen
EUR 283.739,68
Projektlaufzeit
2022-03-01 - 2025-05-31
Finanzierung
Zukunftsfonds Steiermark Ausschreibung: „NEXT GREEN TECH“ Energy Systems, Green Hydrogen & Green Mobility, 14. Ausschreibung des Zukunftsfonds Steiermark
Projektpartner
Institut für Wärmetechnik
Ansprechperson
Sandra STAUDT
sandra.staudt@best-research.eu
Area Management
Markus GÖLLES
markus.goelles@best-research.eu