/src/Controller/ProjectscontentController.php (line 206)
object(App\Model\Entity\Projectscontent) {

	'id' => (int) 461,
	'project_id' => (int) 675,
	'longtitle_de' => 'BIO-LOOP: Chemical Looping for efficient biomass utilisation',
	'longtitle_en' => 'BIO-LOOP: Chemical Looping for efficient biomass utilisation',
	'content_de' => '<p>Die Reduktion von Treibhausgasen ist eine der gr&ouml;&szlig;ten globalen Herausforderungen, denen wir uns heutzutage stellen m&uuml;ssen. Der Weltklimarat hat in seinem 2018 zur globalen Klimaerw&auml;rmung ver&ouml;ffentlichen Sonderbericht klar festgestellt, dass bis zum Jahr 2050 die Netto-Kohlendioxid-Emissionen auf Null herabgesetzt werden m&uuml;ssen, um die globale Erw&auml;rmung noch auf 1,5&deg; C begrenzen zu k&ouml;nnen. Dies macht eine Entfernung des Treibhausgases CO<sub>2 </sub>(Kohlendioxid) aus der Atmosph&auml;re notwendig, da in bestimmten Bereichen, wie der Landwirtschaft und der Luftfahrt, die Emissionen von Treibhausgasen nicht verhindert werden k&ouml;nnen.</p>

<p>Biomasse wird schon jetzt als CO<sub>2</sub>-neutrale Energiequelle angesehen und daher zur Reduktion der Treibhausgas-Emissionen eingesetzt, da das bei der Verbrennung freigesetzte CO<sub>2</sub> beim Wachstum der Pflanzen eingebunden wurde. Mit Hilfe einer neuartigen Technologie, genannt Chemical Looping (CL), wird anstelle von Luft ein Feststoff (Metalloxid) als Sauerstofftr&auml;ger f&uuml;r die Verbrennung und die Vergasung von Biomasse verwendet. Das dabei freiwerdende CO<sub>2</sub> kann aus dem Verbrennungsabgas einfach und kosteng&uuml;nstig abgeschieden und auch als hochwertiger Grundstoff f&uuml;r eine Weiterverarbeitung bereitgestellt werden. Mithilfe der Chemical Looping Technologie wird die Energiebereitstellung aus Biomasse damit sogar CO<sub>2</sub>-negativ.</p>

<p>Diese vielversprechende Methode hat im Bereich der Biomasse bis jetzt einen sehr geringen Technologie-Reifegrad. Das soll nun aber mithilfe des&nbsp; COMET-Moduls &bdquo;BIO-LOOP&ldquo; unter der Leitung von BEST ge&auml;ndert werden. Dabei sollen verschiedene Varianten dieser Technologie untersucht werden, wobei es vor allem um die Produktion von Strom und W&auml;rme, hochreinem Wasserstoff f&uuml;r Brennstoffzellenautos sowie von Gasen als Rohstoffe f&uuml;r moderne Biotreibstoffe und biobasierte Materialien gehen soll.</p>

<p>In den kommenden vier Jahren soll die Tauglichkeit der Chemical Looping Technologie f&uuml;r den Biomassebereich nachgewiesen werden und mit einer daf&uuml;r entwickelten CFD-Simulations-Toolbox zur Prozessanalyse von Str&ouml;mung, Temperaturen und chemischen Reaktionen technologisch beherrschbar gemacht werden.</p>

<p>F&uuml;r BEST ist das Projekt BIO-LOOP ein wichtiger Schritt hin zur verfolgten Vision, innovative Technologien und Systeml&ouml;sungen f&uuml;r eine nachhaltige biobasierte Wirtschaft und zuk&uuml;nftige Energiesysteme zu schaffen.</p>

<p>Mit BIO-LOOP festigt sich die langfristige Perspektive einer Gesellschaft, die frei von fossilem Kohlenstoff wirtschaftet. Eine solche Wirtschaft ist auch unbedingt erforderlich, um die Auswirkungen des Klimawandels abzumildern.</p>

<p>Die Durchf&uuml;hrung des gef&ouml;rderten COMET-Moduls erfolgt in vier Teilprojekten. Gemeinsam mit BEST arbeiten hier renommierte Forschungspartner - unter anderem TU Graz, TU Wien und international anerkannte Institute - sowie Unternehmenspartner aus verschiedenen Branchen zusammen.</p>

<h3>Sucess-Stories</h3>

<p><strong><a href="https://www.best-research.eu/de/unternehmen/comet/view/11">Wasserstoff aus biogenen Reststoffen</a></strong></p>

<p><strong><a href="https://www.best-research.eu/de/unternehmen/comet/view/10">Modelle f&uuml;r die Zukunft</a></strong></p>

<p><a href="https://www.best-research.eu/de/unternehmen/comet/view/9"><strong>Mit dem richtigen Material zum negativen CO<sub>2</sub></strong></a></p>

<p>&nbsp;</p>

<p>&nbsp;</p>

<p>&nbsp;</p>
',
	'content_en' => '<h3>Success Stories</h3>

<p><strong><a href="https://www.best-research.eu/en/company/comet/view/11">Hydrogen from solid biogenic residues</a></strong></p>

<p><strong><a href="https://www.best-research.eu/en/company/comet/view/10">Models for the future</a></strong></p>

<p><a href="https://www.best-research.eu/en/company/comet/view/9"><strong>The right material for negative CO<sub>2</sub> emissions</strong></a></p>
',
	'image_1' => '/webroot/files/image/Projektseite/ChemicalLooping_Grafik.jpg',
	'image_1_caption_de' => 'Chemical Looping',
	'image_1_caption_en' => 'Chemical Looping',
	'image_1_credits_de' => '© BEST',
	'image_1_credits_en' => '© BEST',
	'image_2' => '',
	'image_2_caption_de' => '',
	'image_2_caption_en' => '',
	'image_2_credits_de' => '',
	'image_2_credits_en' => '',
	'image_3' => '',
	'image_3_caption_de' => '',
	'image_3_caption_en' => '',
	'image_3_credits_de' => '',
	'image_3_credits_en' => '',
	'logos' => '<ul>
	<li>TU Graz (Institut f&uuml;r Chemische Verfahrenstechnik und Umwelttechnik)</li>
	<li>TU Graz (Institut f&uuml;r W&auml;rmetechnik)</li>
	<li>TU Wien, (ICEBE)</li>
	<li>Chalmers University of Technology</li>
	<li>Spanish National Research Council (CSIC)</li>
	<li>National Institute of Chemistry, Slovenia</li>
	<li>Aichernig Engineering GmbH</li>
	<li>AVL List GmbH</li>
	<li>Rouge H2 Engineering GmbH</li>
	<li>SW-Energie Technik GmbH</li>
	<li>TG Mess,-Steuer- und Regeltechnik GmbH</li>
	<li>Rohkraft &ndash; Ing. Karl Pfiehl GmbH</li>
</ul>
',
	'finanzierung' => '<p>BIO-LOOP wird im Rahmen von COMET - Competence Centers for Excellent Technologies durch BMK, BMDW und dem Land Steiermark (SFG) gef&ouml;rdert. Das Programm COMET wird durch die FFG abgewickelt.</p>
',
	'active' => true,
	'created' => null,
	'modified' => null,
	'projektvolumen' => '',
	'project' => object(App\Model\Entity\Project) {

		'Nummer' => (int) 675,
		'Projektnummer' => 'C40094',
		'Kurzbezeichnung' => 'BIO-LOOP',
		'Kurzbezeichnung_en' => '',
		'Oeffentlich' => '1',
		'Projektname' => 'Chemical Looping for efficient biomass utilisation ',
		'Projektname_en' => 'Chemical Looping for efficient biomass utilisation ',
		'Projektleitung' => (int) 48,
		'Start' => object(Cake\I18n\FrozenDate) {

			'time' => '2020-04-01 00:00:00.000000+00:00',
			'timezone' => 'UTC',
			'fixedNowTime' => false
		
		},
		'Ende' => object(Cake\I18n\FrozenDate) {

			'time' => '2024-12-31 00:00:00.000000+00:00',
			'timezone' => 'UTC',
			'fixedNowTime' => false
		
		},
		'publications' => [
			(int) 0 => object(App\Model\Entity\Publication) {

				'id' => (int) 1353,
				'titel' => 'Chemical Looping for efficient biomass utilization',
				'subtitel' => '',
				'autor' => 'Schulze K, Kienzl N, Steiner T, Martini S, Priscak J',
				'herausgeber' => '',
				'jahr' => (int) 2023,
				'datum_publikation' => '28 June 2023',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 14,
				'publications_subcategory_id' => (int) 11,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Schulze K, Kienzl N, Steiner T, Martini S, Priscak J. Chemical Looping for efficient biomass utilization. BEST Center Day. June 2023',
				'abstract' => '<p>With respect to the climate objectives Chemical Looping (CL) processes constitute a promising alternative to traditional thermochemical conversion routes. Through the application of solid materials, so-called oxygen carriers (OC), instead of air as oxygen supply, CO2 can be easily separated from the flue gas. By this, biomass can be used for hydrogen production (Chemical Looping Hydrogen, CLH) or it can be burnt without CO2 emissions (Chemical Looping Combustion, CLC).</p>
',
				'pdf_file' => 'files/publications/pdf/Area%201.1_1.2_2.1_SA%202.1%20BIO-LOOP.pdf',
				'hyperlink' => '',
				'downloadbar' => true,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2023-07-05 08:04:59.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2023-07-05 08:30:59.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 1030,
					'project_id' => (int) 675,
					'publication_id' => (int) 1353,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2023-08-16 10:40:29.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2023-08-16 10:40:29.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			},
			(int) 1 => object(App\Model\Entity\Publication) {

				'id' => (int) 1394,
				'titel' => 'Experimental demonstration of 80 kWth chemical looping combustion of biogenic feedstock coupled with direct CO2 utilization by exhaust gas methanation',
				'subtitel' => '',
				'autor' => '',
				'herausgeber' => '',
				'jahr' => (int) 2019,
				'datum_publikation' => '10 May 2023',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 15,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Fleiß B, Bartik A, Priscak J, Benedikt F, Fuchs J, Müller S, Hofbauer H.Experimental demonstration of 80 kWth chemical looping combustion of biogenic feedstock coupled with direct CO2 utilization by exhaust gas methanation. Biomass Conversion and Biorefinery.10 May 2023',
				'abstract' => '<p>Chemical looping combustion is a highly efficient CO2 separation technology without direct contact between combustion air and fuel. A metal oxide is used as an oxygen carrier in dual fluidized beds to generate clean CO2. The use of biomass is the focus of current research because of the possibility of negative CO2 emissions and the utilization of biogenic carbon. The most commonly proposed OC are natural ores and residues, but complete combustion has not yet been achieved. In this work, the direct utilization of CLC exhaust gas for methane synthesis as an alternative route was investigated, where the gas components CO, CH4 and H2 are not disadvantageous but benefit the reactions in a methanation step. The whole process chain, the coupling of an 80 kWth pilot plant with gas cleaning and a 10&nbsp;kW fluidized bed methanation unit were for this purpose established. As OC, ilmenite enhanced with limestone was used, combusting bark pellets in autothermal operation at over 1000&nbsp;&deg;C reaching high combustion efficiencies of up to 91.7%. The fuel reactor exhaust gas was mixed with hydrogen in the methanation reactor at 360&nbsp;&deg;C and converted with a methane yield of up to 97.3%. The study showed especially high carbon utilization efficiencies of 97% compared to competitor technologies. Based on the experimental results, a scale-up concept study showed the high potential of the combination of the technologies concerning the total efficiency and the adaptability to grid injection.</p>
',
				'pdf_file' => '',
				'hyperlink' => '10.1007/s13399-023-04311-9',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2023-12-13 09:45:34.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2023-12-13 10:08:18.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 1064,
					'project_id' => (int) 675,
					'publication_id' => (int) 1394,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2023-12-13 10:08:18.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2023-12-13 10:08:18.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			},
			(int) 2 => object(App\Model\Entity\Publication) {

				'id' => (int) 1397,
				'titel' => 'Effect of time-dependent layer formation on the oxygen transport capacity of ilmenite during combustion of ash-rich woody biomass',
				'subtitel' => '',
				'autor' => '',
				'herausgeber' => '',
				'jahr' => (int) 2023,
				'datum_publikation' => '1 December 2023',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 15,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Priscak J, Valizadeh A, Öhman M, Hofbauer H, Kuba M. Effect of time-dependent layer formation on the oxygen transport capacity of ilmenite during combustion of ash-rich woody biomass. Fuel. 1 December 2023. 353:129068',
				'abstract' => '<p>Oxygen carrier aided combustion (OCAC) is a novel technology that aims to enhance combustion of heterogenous fuels by replacing the inert bed material with an active oxygen carrier. One of the promising oxygen carriers is natural ilmenite which shows decent oxygen transport capacity and mechanical stability under OCAC operating conditions. However, interactions between ilmenite and woody biomass ash lead to the formation of a calcium-rich ash layer, which affects the ability of the oxygen carrier (OC) to transfer oxygen throughout the boiler and subsequently decreases the combustion efficiency. This paper focuses on the time-dependent morphological and compositional changes in ilmenite bed particles and the consequence effects on the oxygen transport capacity and reactivity of ilmenite. Ilmenite utilized in this study was investigated in a 5&nbsp;kW bubbling fluidized bed combustion unit, utilizing ash-rich bark pellets as fuel. A negative effect of iron migration on the oxygen transport capacity was observed in ilmenite bed particles after 6&nbsp;h of operation in the bubbling fluidized bed reactor. The decrease in the oxygen transport capacity of ilmenite was found to correlate with the increased exposure time in the fluidized bed reactor and was caused by the migration and subsequent erosion of Fe from the ilmenite particles. On the other hand, the older bed particles show an increase in reaction rate, presumably due to the catalytic activity of the calcium-enriched outer layer on the bed particle surface.</p>
',
				'pdf_file' => '',
				'hyperlink' => 'https://doi.org/10.1016/j.fuel.2023.129068',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2023-12-13 09:59:09.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2023-12-13 10:09:27.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 1065,
					'project_id' => (int) 675,
					'publication_id' => (int) 1397,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2023-12-13 10:09:27.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2023-12-13 10:09:27.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			},
			(int) 3 => object(App\Model\Entity\Publication) {

				'id' => (int) 1420,
				'titel' => 'On the Applicability of Iron-Based Oxygen Carriers and Biomass-Based Syngas for Chemical Looping Hydrogen Production',
				'subtitel' => '',
				'autor' => '',
				'herausgeber' => '',
				'jahr' => (int) 2024,
				'datum_publikation' => '5 September 2024',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 11,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Steiner T, von Berg L, Anca-Couce A, Schulze K. On the Applicability of Iron-Based Oxygen Carriers and Biomass-Based Syngas for Chemical Looping Hydrogen Production. Energy & Fuels. 2024',
				'abstract' => '<p>The chemical looping hydrogen (CLH) production process typically uses iron-based oxygen carrier materials and can provide hydrogen with high purity. Chemical looping is particularly attractive when renewable fuels like syngas from biomass gasifiers are used. This work provides a novel assessment of the possible thermodynamic and kinetic limitations for iron-based oxygen carriers in CLH fueled by biomass-based syngas, with a detailed study employing synthetic ilmenite (Fe2O3 + TiO2). Its phase diagram with H2/H2O- or CO/CO2-mixtures was compared to the typical Baur&ndash;Glaessner diagram for iron oxides. Thermogravimetric analyses underlined the necessity to consider TiO2 as a chemically active component for this material, in contrast to the common simplification of inert support materials. The validated phase diagram predicted stringent fuel limitations concerning H2O- or CO2-contents. This was confirmed by feeding a real biomass-based syngas, provided by a lab-scale gasifier, to a fixed bed CLH reactor. It was demonstrated for the H2/H2O-system that removing the oxidizing agent from the feed gas helps to overcome these limitations. Kinetic limitations within the thermodynamic boundaries were investigated using a recently published multiscale model for the H2/H2O-system. The influence of the fuel&rsquo;s reduction potential on reaction rates was explored to formulate simple, kinetic design criteria. A significant retardation of conversion rate in the vicinity of the equilibrium was indicated, effectively narrowing the feasible composition range. Recommendations for the application of biomass-based syngas with iron-based oxygen carrier materials were provided.</p>
',
				'pdf_file' => '',
				'hyperlink' => 'https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c03137',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2024-09-17 17:36:46.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2024-09-17 17:36:46.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 1113,
					'project_id' => (int) 675,
					'publication_id' => (int) 1420,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2024-09-17 17:36:46.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2024-09-17 17:36:46.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			},
			(int) 4 => object(App\Model\Entity\Publication) {

				'id' => (int) 1460,
				'titel' => 'Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen',
				'subtitel' => '',
				'autor' => '',
				'herausgeber' => '',
				'jahr' => (int) 2024,
				'datum_publikation' => 'August 2024',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 1,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Blaschke F, Prasad BP, Machado Charry E, Halper K, Fuchs M, Resel R, Zojer K, Lammer M, Hasso R, Hacker V. Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen. Catalysts. 2024. 14(8):515
',
				'abstract' => '<p>Green hydrogen is central to the energy transition, but its production often requires expensive materials and poses environmental risks due to the perfluorinated substances used in electrolysis. This study introduces a transformative approach to green hydrogen production via chemical looping, utilizing an iron-based oxygen carrier with yttrium-stabilized zirconium oxide (YSZ). A significant innovation is the replacement of Al2O3 with SiO2 as an inert support pellet, enhancing process efficiency and reducing CO2 contamination by minimizing carbon deposition by up to 700%. The major findings include achieving a remarkable hydrogen purity of 99.994% without the need for additional purification methods. The Fe-YSZ oxygen carrier possesses a significantly higher pore volume of 323 mm&sup3;/g and pore surface area of 18.3 m&sup2;/g, increasing the pore volume in the iron matrix by up to 50%, further improving efficiency. The catalytic system exhibits a unique self-cleaning effect, substantially reducing CO2 contamination. Fe-YSZ-SiO2 demonstrated CO2 contamination levels below 100 ppm, which is particularly noteworthy. This research advances our understanding of chemical looping mechanisms and offers practical, sustainable solutions for green hydrogen production, highlighting the crucial synergy between support pellets and oxygen carriers. These findings underscore the potential of chemical looping hydrogen (CLH) technology for use in efficient and environmentally friendly hydrogen production, contributing to the transition to cleaner energy sources.</p>
',
				'pdf_file' => '',
				'hyperlink' => 'https://graz.elsevierpure.com/de/publications/advancing-green-hydrogen-purity-with-iron-based-self-cleaning-oxy',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2024-11-07 15:00:47.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2024-11-07 15:00:47.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 1124,
					'project_id' => (int) 675,
					'publication_id' => (int) 1460,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2024-11-07 15:00:47.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2024-11-07 15:00:47.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			},
			(int) 5 => object(App\Model\Entity\Publication) {

				'id' => (int) 1480,
				'titel' => 'Chemical looping of synthetic ilmenite. Part II: Multiscale perspective on modeling CLC and CLH',
				'subtitel' => '',
				'autor' => 'Thomas Steiner',
				'herausgeber' => '',
				'jahr' => (int) 2025,
				'datum_publikation' => '15 August 2025',
				'publications_type_id' => (int) 1,
				'publications_category_id' => (int) 9,
				'publications_subcategory_id' => (int) 11,
				'issn' => '',
				'copyright' => '',
				'citation' => 'Steiner T, Schulze K, Anca-Couce A, Scharler R. Chemical looping of synthetic ilmenite. Part II: Multiscale perspective on modeling CLC and CLH. 15 August 2025. Fuel. 394:135040.',
				'abstract' => '<p>This work investigates the chemical looping combustion (CLC) and chemical looping hydrogen (CLH) production processes of synthetic ilmenite at three relevant length scales: reactor, particle and reaction. Focusing on reduction with hydrogen, part I analyzed the reaction scale for CLC using thermogravimetric analysis (TGA). Complementary fixed bed reactor experiments for reduction and oxidation using pellets (CLC, CLH) and TGA experiments using powders or pellets (CLH) were now added. All measurements were used to develop a consistent multiscale model. Particle and reactor scales were described by one-dimensional volumetric models. The required complexity of the reaction model differed from case to case. Kinetic modeling for oxidations in the reactor was trivial, since gaseous reactants were fully consumed. Reductions with hydrogen, however, were more intricate. Considering the influence of equilibrium on the reactivity was crucial for CLH. The reduction for CLC was faster and even more complex. We novelly demonstrated how kinetics, originally derived only from TGA with powders, were not directly applicable to larger scales when underlying phenomena had been neglected. In order to overcome these limitations and achieve better consistency, equilibrium effects and the gas availability above the sample during TGA had to be considered. The suitability of the synthetic ilmenite for CLC and CLH was discussed based on the findings in this work.</p>
',
				'pdf_file' => '',
				'hyperlink' => 'https://www.sciencedirect.com/science/article/pii/S0016236125007653?via%3Dihub',
				'downloadbar' => false,
				'active' => true,
				'created' => object(Cake\I18n\FrozenTime) {

					'time' => '2025-04-08 09:14:26.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'modified' => object(Cake\I18n\FrozenTime) {

					'time' => '2025-04-08 09:14:26.000000+00:00',
					'timezone' => 'UTC',
					'fixedNowTime' => false
				
				},
				'_joinData' => object(App\Model\Entity\ProjectsPublication) {

					'id' => (int) 1164,
					'project_id' => (int) 675,
					'publication_id' => (int) 1480,
					'created' => object(Cake\I18n\FrozenTime) {

						'time' => '2025-04-08 09:14:26.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'modified' => object(Cake\I18n\FrozenTime) {

						'time' => '2025-04-08 09:14:26.000000+00:00',
						'timezone' => 'UTC',
						'fixedNowTime' => false
					
					},
					'[new]' => false,
					'[accessible]' => [
						'*' => true,
						'id' => false
					],
					'[dirty]' => [],
					'[original]' => [],
					'[virtual]' => [],
					'[hasErrors]' => false,
					'[errors]' => [],
					'[invalid]' => [],
					'[repository]' => 'ProjectsPublications'
				
				},
				'[new]' => false,
				'[accessible]' => [
					'*' => true,
					'id' => false
				],
				'[dirty]' => [],
				'[original]' => [],
				'[virtual]' => [],
				'[hasErrors]' => false,
				'[errors]' => [],
				'[invalid]' => [],
				'[repository]' => 'Publications'
			
			}
		],
		'employee' => object(App\Model\Entity\Employee) {

			'Nummer' => (int) 48,
			'Kurzzeichen' => 'KaiSCH',
			'Mitarbeiternummer' => '38',
			'anstellungsdaten_id' => (int) 1735,
			'geschlecht' => 'm',
			'pronomen' => '',
			'Vorname' => 'Kai',
			'Nachname' => 'SCHULZE',
			'TelFirma' => '+43 5 02378-9232',
			'TelFirmaMobil' => '+43 664 88796991',
			'TelFirmaMobil_public' => true,
			'email' => 'kai.schulze@best-research.eu',
			'id' => (int) 1735,
			'mitarbeiter_id' => (int) 48,
			'anstellung' => object(Cake\I18n\FrozenDate) {

				'time' => '2019-05-13 00:00:00.000000+00:00',
				'timezone' => 'UTC',
				'fixedNowTime' => false
			
			},
			'anstellung_ende' => object(Cake\I18n\FrozenDate) {

				'time' => '2043-12-31 00:00:00.000000+00:00',
				'timezone' => 'UTC',
				'fixedNowTime' => false
			
			},
			'anstellung_art' => 'DV',
			'anstellung_ort' => 'GR',
			'arbeit_ort' => 'GR',
			'area_id' => (int) 31,
			'intern' => '1',
			'gruppe' => (int) 9,
			'anzeige_homepage' => '',
			'gruppe_pm_tool' => '0',
			'karenzierung_grund' => null,
			'karenzierung_urlaubsanspruch' => false,
			'kostenstelle' => (int) 0,
			'kostenstelle_neu' => (int) 0,
			'auf_homepage_verstecken' => false,
			'Titel' => 'Dr.-Ing.',
			'neuanstellung' => false,
			'karenzgrund' => null,
			'Bezeichnung' => null,
			'Bezeichnung_0' => null,
			'stundenumfang' => (float) 38.5,
			'xing' => '',
			'xing_public' => false,
			'linkedin' => '',
			'linkedin_public' => false,
			'scopus' => '',
			'scopus_public' => false,
			'orcid' => '',
			'orcid_public' => false,
			'mendeley' => '',
			'mendeley_public' => false,
			'googlescholar' => '',
			'googlescholar_public' => false,
			'researchgate' => '',
			'researchgate_public' => false,
			'pure' => '',
			'pure_public' => false,
			'full_name' => 'SCHULZE Kai',
			'[new]' => false,
			'[accessible]' => [
				'*' => true,
				'Nummer' => false
			],
			'[dirty]' => [],
			'[original]' => [],
			'[virtual]' => [
				(int) 0 => 'full_name'
			],
			'[hasErrors]' => false,
			'[errors]' => [],
			'[invalid]' => [],
			'[repository]' => 'Employees'
		
		},
		'project_area' => null,
		'display_name' => 'C40094 -  BIO-LOOP',
		'[new]' => false,
		'[accessible]' => [
			'*' => true,
			'Nummer' => false
		],
		'[dirty]' => [],
		'[original]' => [],
		'[virtual]' => [
			(int) 0 => 'project_area',
			(int) 1 => 'display_name'
		],
		'[hasErrors]' => false,
		'[errors]' => [],
		'[invalid]' => [],
		'[repository]' => 'Projects'
	
	},
	'[new]' => false,
	'[accessible]' => [
		'*' => true,
		'id' => false
	],
	'[dirty]' => [],
	'[original]' => [],
	'[virtual]' => [],
	'[hasErrors]' => false,
	'[errors]' => [],
	'[invalid]' => [],
	'[repository]' => 'Projectscontent'

}
Seite 54 / 99

BIO-LOOP: Chemical Looping for efficient biomass utilisation

Die Reduktion von Treibhausgasen ist eine der größten globalen Herausforderungen, denen wir uns heutzutage stellen müssen. Der Weltklimarat hat in seinem 2018 zur globalen Klimaerwärmung veröffentlichen Sonderbericht klar festgestellt, dass bis zum Jahr 2050 die Netto-Kohlendioxid-Emissionen auf Null herabgesetzt werden müssen, um die globale Erwärmung noch auf 1,5° C begrenzen zu können. Dies macht eine Entfernung des Treibhausgases CO2 (Kohlendioxid) aus der Atmosphäre notwendig, da in bestimmten Bereichen, wie der Landwirtschaft und der Luftfahrt, die Emissionen von Treibhausgasen nicht verhindert werden können.

Biomasse wird schon jetzt als CO2-neutrale Energiequelle angesehen und daher zur Reduktion der Treibhausgas-Emissionen eingesetzt, da das bei der Verbrennung freigesetzte CO2 beim Wachstum der Pflanzen eingebunden wurde. Mit Hilfe einer neuartigen Technologie, genannt Chemical Looping (CL), wird anstelle von Luft ein Feststoff (Metalloxid) als Sauerstoffträger für die Verbrennung und die Vergasung von Biomasse verwendet. Das dabei freiwerdende CO2 kann aus dem Verbrennungsabgas einfach und kostengünstig abgeschieden und auch als hochwertiger Grundstoff für eine Weiterverarbeitung bereitgestellt werden. Mithilfe der Chemical Looping Technologie wird die Energiebereitstellung aus Biomasse damit sogar CO2-negativ.

Diese vielversprechende Methode hat im Bereich der Biomasse bis jetzt einen sehr geringen Technologie-Reifegrad. Das soll nun aber mithilfe des  COMET-Moduls „BIO-LOOP“ unter der Leitung von BEST geändert werden. Dabei sollen verschiedene Varianten dieser Technologie untersucht werden, wobei es vor allem um die Produktion von Strom und Wärme, hochreinem Wasserstoff für Brennstoffzellenautos sowie von Gasen als Rohstoffe für moderne Biotreibstoffe und biobasierte Materialien gehen soll.

In den kommenden vier Jahren soll die Tauglichkeit der Chemical Looping Technologie für den Biomassebereich nachgewiesen werden und mit einer dafür entwickelten CFD-Simulations-Toolbox zur Prozessanalyse von Strömung, Temperaturen und chemischen Reaktionen technologisch beherrschbar gemacht werden.

Für BEST ist das Projekt BIO-LOOP ein wichtiger Schritt hin zur verfolgten Vision, innovative Technologien und Systemlösungen für eine nachhaltige biobasierte Wirtschaft und zukünftige Energiesysteme zu schaffen.

Mit BIO-LOOP festigt sich die langfristige Perspektive einer Gesellschaft, die frei von fossilem Kohlenstoff wirtschaftet. Eine solche Wirtschaft ist auch unbedingt erforderlich, um die Auswirkungen des Klimawandels abzumildern.

Die Durchführung des geförderten COMET-Moduls erfolgt in vier Teilprojekten. Gemeinsam mit BEST arbeiten hier renommierte Forschungspartner - unter anderem TU Graz, TU Wien und international anerkannte Institute - sowie Unternehmenspartner aus verschiedenen Branchen zusammen.

Sucess-Stories

Wasserstoff aus biogenen Reststoffen

Modelle für die Zukunft

Mit dem richtigen Material zum negativen CO2