Warning (2): Invalid argument supplied for foreach() [APP/Controller/AppController.php, line 669]Code Context $count = $current = 0;
foreach ($array as $key => $value) {
//pr($key);
$array = null
$id = '1458'
$found = false
$next = false
$prev = false
$count = (int) 0
$current = (int) 0
App\Controller\AppController::getPrevNext() - APP/Controller/AppController.php, line 669
App\Controller\PublicationsController::view() - APP/Controller/PublicationsController.php, line 135
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 606
Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 120
Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 66
Cake\Controller\Controller::requestAction() - CORE/src/Routing/RequestActionTrait.php, line 181
App\Controller\MenusController::actionRequest() - APP/Controller/MenusController.php, line 745
eval - APP/Controller/MenusController.php(326) : eval()'d code, line 1
App\Controller\MenusController::index() - APP/Controller/MenusController.php, line 326
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 606
Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 120
Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 66
[main] - ROOT/webroot/index.php, line 43
Warning (2): count() [<a href='https://secure.php.net/function.count'>function.count</a>]: Parameter must be an array or an object that implements Countable [APP/Controller/AppController.php, line 689]Code Context }
$count = count($array);
$this->set(compact(['next', 'prev', 'current', 'count']));
$array = null
$id = '1458'
$found = false
$next = false
$prev = false
$count = (int) 0
$current = (int) 0
count - [internal], line ??
App\Controller\AppController::getPrevNext() - APP/Controller/AppController.php, line 689
App\Controller\PublicationsController::view() - APP/Controller/PublicationsController.php, line 135
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 606
Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 120
Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 66
Cake\Controller\Controller::requestAction() - CORE/src/Routing/RequestActionTrait.php, line 181
App\Controller\MenusController::actionRequest() - APP/Controller/MenusController.php, line 745
eval - APP/Controller/MenusController.php(326) : eval()'d code, line 1
App\Controller\MenusController::index() - APP/Controller/MenusController.php, line 326
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 606
Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 120
Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 66
[main] - ROOT/webroot/index.php, line 43
Publication | Peer reviewed papers | Potentiale, Bioenergiesysteme, Logistik
Gaussian Process Regression-Based Control of Solids Circulation Rate in Dual Fluidized Bed Gasification
Published 23 september 2024
Citation: Stanger L, Bartik A, Binder M, Schirrer A, Jakubek S, Kozek M. Gaussian Process Regression-Based Control of Solids Circulation Rate in Dual Fluidized Bed Gasification. IEEE Access. 2024.23:138535 - 138546.
Abstract
In dual fluidized bed (DFB) gasification, the solids circulation rate is critical as it determines the amount of char and heat transported between the interconnected reactors. In DFB plants, multiple control inputs are typically available to control the solids circulation rate, resulting in an over-actuated system. We propose a modeling and control method based on Gaussian process regression, a technique that provides a measure of confidence in the model prediction. The availability of redundant control inputs is resolved by explicitly incorporating the prediction confidence information into the control algorithm to drive the process in regions of low model uncertainty. To address plant-model mismatches, a disturbance model is employed, and an extended Kalman filter is used to estimate both system and disturbance states, enabling offset-free tracking of constant references. Modeling and closed-loop simulation results for both a 100 kW and a 1 MW DFB gasification plant demonstrate the applicability of the method to different plants. Experimental results are presented for the 100 kW plant, demonstrating the successful control of the circulation rate by the proposed algorithm.
External Link