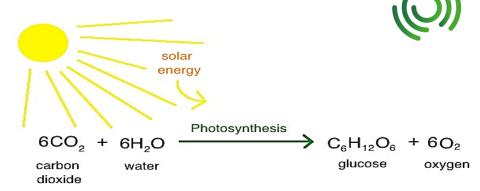


Challenges and recent results in microalgae research

Graz, 2020 January 22nd

Katharina Meixner


What are Algae?

- Informal term for a large, diverse group of photosynthetic organisms
- Macro -

2

© J. Murphy (2012) IEA Biogas Country Report Ireland

Eukaryotes

Chlorella vulgaris, C. sorokiniana, Nannochloropsis limnetica, Acutodesmus obliquus (Scenedesmus)

© M. Gruber, IFA Tulln

Prokaryotes (Cyanobacteria)

Limnospira platensis (Spirulina), Synechocystis sp.,

© C. Troschl. IFA Tulln

Bacteria (eubacteria)

Terrabacteria group

TACK group

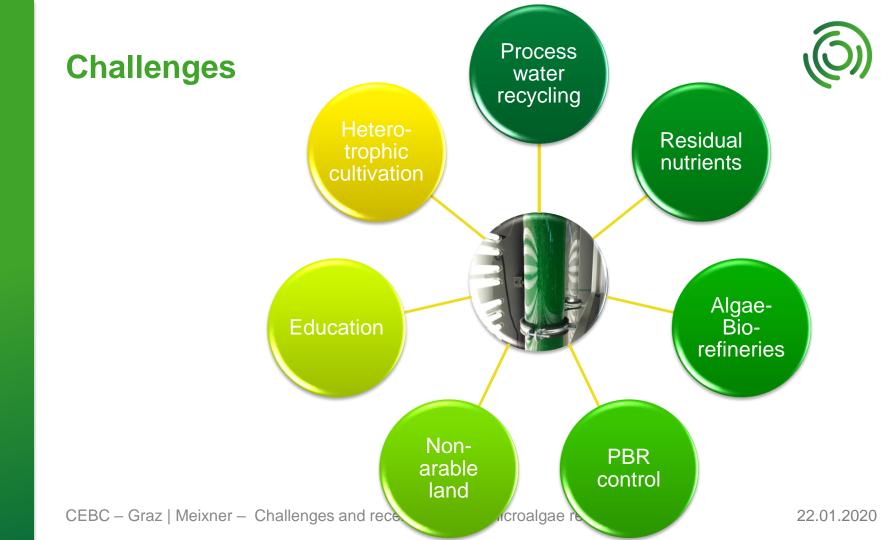
Archaea

© Lifemap –

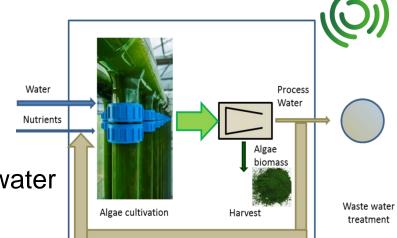
http://lifemap.univlyon1.fr/explore.html#

22.01.2020

Cultivation systems


- Photoautotroph:
 - CO₂-incubator
 - Illuminated shelfs
 - Bubble columns
 - PBRs (5L, 15L, 200L)

- Hetero-/Mixotroph
 - INFORS System
 - 100L-Reactors



Process water recirculation

Increase recirculation of algaeprocess water for saving water
and nutrients and reduce wastewater

- Organic content was reduced by using FeCl₃.
- Pigments, proteins and lipids decreased with increasing number of recirculations.
- Costs for fresh water and wastewater can be reduced by 80-82 % and for nutrient consumption by 14-35%

Heterotrophic cultivation

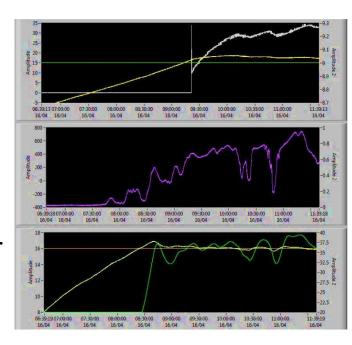
 Heterotrophic and axenic cultivation of algae strains for the production of food grade biomass and PUFAs

- Successful heterotrophic cultivation at 60L scale for Chlorella vulgaris biomass production
- Selection of high-producers of PUFAs and identification of fatty acid spectra

Residues as nutrient source

Utilisation of effluents as nutrient biogas plant source for cultivating algae and algae biomass as fish feed to increase the efficiency of AD facilities

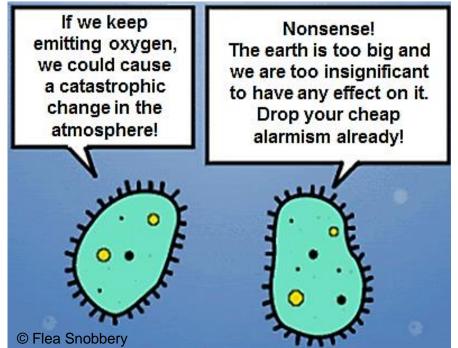
- WW not feasible as nutrient source
- Food waste digestate most promising
 - Fewest treatment steps required and biomass suitable for fish feed, but no EPA, DHA
- Reduction of N lowers required dilution and shows best growth



Photobioreactor control system

- Optimising the control and automatization of biotechnological processes
 - WP1: tubular photobioreactor

- Improvement of CO₂-injection based on pH-value via PID-controller
- Control of pumping speed based on O₂-concentration



Thanks to all BEST-Algae-Supporter

BEST

Bioenergy and Sustainable Technologies

