

Operational optimization and error detection in biomass boilers by model-based monitoring: methods and practice

Central European Biomass Conference 2023 20th January 2023, Graz, Austria

Christopher Zemann, Helmut Niederwieser, Markus Gölles

Bundesministerium Arbeit und Wirtschaft Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Continuous operational monitoring of medium- and large-scale biomass boilers

- Purpose of continuous operational monitoring:
 - o detect errors and faults
 - o identify possibilities for operational optimization
- Problem in practice: high complexity and time consumption
 - o errors are frequently detected too late or not at all
 - inefficient operation → high operating costs
 - increased pollutant emissions \rightarrow problems with regulators
 - costly secondary errors \rightarrow to the point of complete plant failure
 - o possibilities for optimization remain unused
 - also resulting in low efficiencies, high operating costs and unnecessary pollutant emissions.

Continuous operational monitoring of medium- and large-scale biomass boilers

 Goal: develop computer algorithms that supports the plant operators in performing the complex task of continuous operational monitoring.

Expected advantages:

- o high degree of automation
 - quality of the monitoring stays the same (no tired or distracted operator)
 - reduce the workload of the operators and thus free up time for other tasks
- o possibility of simultaneous analysis of a large amount of information with a high level of detail
 - detect and even predict errors that operators did not see
 → correct errors before they lead to serious damage
 - identify changes in the operating conditions (e.g. fuel properties)
 → automated adaption to these changes in order to optimize operational behaviour

Example 1 - heat exchanger fouling Problem description

Plants:

- o biomass boilers with warm- or hot-water fire-tube heat exchanger
- o small-scale or medium-scale

Frequent error: heat exchanger fouling

- o accumulation of deposits on heat transferring surfaces
- o if significant fouling remains undetected:
- decreased efficiency
- permanent damage to the heat exchanger

Problem: how to detect that significant fouling occurs?

- o during revision: visual inspection
- o during ongoing operation?

Example 1 - heat exchanger fouling Methodology

 Idea: develop an algorithm that automatically detects, whether the heat transfer coefficient deteriorates over time.

Model-based monitoring:

- o dynamic mathematical model of the heat exchanger
- real time estimation of the model parameters using measurement data and an Extended Kalman Filter
- \circ one parameter is the heat transfer coefficient
- "digital twin"
- Plug&Play solution
- Observe and analyze the rate of change of the estimated heat transfer coefficient
 - \circ $\,$ change over time is a measure for the fouling rate

Example 1 - heat exchanger fouling Exemplary results

Plant description:

- o medium-scale fixed-bed biomass boiler
- nominal capacity: 1 MW
- fuel: wood chips (water content: ~30 w.t.%)

Measured data:

- o <u>water</u>:
 - feed and return temperature
 - thermal output
- o <u>flue gas</u>:
 - residual oxygen content
 - temperature at the heat exchanger outlet
 - differential pressure over heat exchanger
- Not measured:
 - o any mass flow except for the water mass flow

The heat transfer coefficient deteriorates by approximately 2.6% in only 60 hours.

Thus fouling occurs at a significant rate This would stay undetected.

Example 1 - heat exchanger fouling Conclusion

Method:

- o provides a qualitative statement about the extent of fouling in heat exchangers
- o only standard measurement data is required
- Plug&Play \rightarrow no or only very simple parameterization necessary

Possible applications in practice:

- o detect and counteract fouling before it becomes a problem \rightarrow "predictive maintenance"
- o automatically adapt cleaning procedures on the fly
- o improve maintenance and service

Example 2 - fuel property estimation Problem description

Plants:

- o fixed-bed biomass boilers
- o small-scale or medium-scale

Challenge: constantly changing fuel properties

- o adapt the boiler operation to changing fuel properties
 - ensure a complete combustion
 - maintain combustion temperature
 - ensure low pollutant emissions
 - avoid ash melting

Important fuel properties

- o bulk density
- o water content
- chemical composition (C, H, O)

Example 2 - fuel property estimation Methodology

- plant operators have an "idea" what fuel is currently being combusted
- however, the exact fuel properties are not known and are constantly changing
- Idea: develop an algorithm that estimates the fuel properties in real time

Model-based monitoring:

- utilize a dynamic mathematical model of the fuel feed and the fuel feed as well as mass- and substance balance equations
- real time estimation of the model parameters using measurement data and an Extended Kalman Filter
- o some of the parameters represent fuel properties

Example 2 - fuel property estimation

Exemplary results - simulations

Plant description:

- small-scale fixed-bed biomass boiler
- nominal capacity: 50 kW
- o fuel properties: changing over time

Measured data:

- <u>flue gas</u>:
 - residual oxygen content
 - water content
- o <u>mass flows</u>:
 - primary air
 - secondary air
 - flue gas

Fuel properties can be accurately identified.

Example 2 - fuel property estimation

Exemplary results - measured data

Plant description:

- small-scale fixed-bed biomass boiler
- nominal capacity: 50 kW
- o fuel properties: corncob grits

Measured data:

- o <u>flue gas</u>:
 - residual oxygen content
 - water content
- o <u>mass flows</u>:
 - primary air
 - secondary air
 - flue gas

Fuel properties can be accurately identified. Measurement errors introduce estimation errors.

Example 2 - fuel property estimation Conclusion

Method:

- o provides accurate estimates of the most relevant fuel properties
- o requires additional measurement data
- o must be parameterized

Possible applications in practice:

- o adapt the control strategy (primary air ratio) and grate movement to
 - improve combustion quality
 - reduce pollutant emissions
 - avoid ash melting problems
- o warn users, if fuel properties are too different from the intended fuel

Outlook and other applications of model-based monitoring

- Supports the plant operators in the most difficult tasks
 - o more accurate error detection
 - o generally more optimally operated plants
 - higher efficiencies
 - lower pollutant emissions
 - lower work load for plant operators

Other applications

- biomass combustion
 - e.g. predictive maintenance to predict pump or fan failure
- o biomass gasification
 - e.g. determine internal state of the gasifier \rightarrow improve operational stability and fuel flexibility
- o heating grids
 - e.g. heat loss detection and localization
- o any technical process

Operational optimization and error detection in biomass boilers by model-based monitoring: methods and practice

Central European Biomass Conference 2023 20th January 2023, Graz, Austria

Christopher Zemann, Helmut Niederwieser, Markus Gölles

Bundesministerium Arbeit und Wirtschaft Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

