

Efficiency increase of biomass combustion systems by a modular CO- λ optimization: method and results from long-term verification

Central European Biomass Conference 2023 19th January 2023, Graz, Austria

Christopher Zemann, Alexander Max, Markus Gölles, Martin Horn

Bundesministerium Arbeit und Wirtschaft Energie, Mobilität, Innovation und Technologie

Oxygen content - boiler efficiency

Boiler efficiency as a function of the residual oxygen content of the flue gas

A reduced residual oxygen content of the flue gas (O_2) leads to:

- an increased boiler efficiency
- decreased electric power consumption of the air- and flue gas fans

Example: 2.5 MW boiler

O₂-decrease by 1 - 2 vol.%

€3.000 - €5.000 savings in fuel and electricity costs **per year**

Oxygen content - pollutant emissions

The CO- λ -characteristic changes with the thermal load and the fuel.

Operating the biomass boiler with a constant value for O_2 results in:

- increased CO-emissions or
- decreased boiler efficiency

CO-\lambda-optimisation: Operation of the biomass boiler with a value for O₂ which

- maximises the boiler efficiency and simultaneously
- minimises the CO-emissions

$CO-\lambda$ -optimisation - method

real CO-λ-characteristics using an extended Kalman Filter.

19.01.2023

residual oxygen content

The CO- λ -optimisation can be implemented at all biomass boilers with existing O₂-controller \rightarrow It is a **modular method**.

Long-term verification

Heating plant:

- management: s.nahwaerme.at
 Energiecontracting GmbH
- 2 biomass boilers
 - $\circ~$ 1 MW and 2.5 MW
- annual heat output: 16000 MWh
- customers: ~175

Heating plant in Fuschl am See.

The CO- λ -optimisation has been implemented at one of the biomass boilers

- nominal capacity: 2.5 MW
- fuel: wood chips (water content: 30-50 w.t.%)

Long-term verification - description

Procedure for the long-term verification:

- time period: November 2018 to March 2019 (5 months)
- The modular CO-λ-optimisation was repeatedly activated for 2 days and subsequently deactivated for 2 days to ensure comparable conditions.

Method of calculating the boiler efficiency

- The boiler's thermal output was measured and from it the total delivered heat was calculated for activated and deactivated CO-λ-optimisation.
- The number of stoker cycles was recorded for activated and deactivated CO-λ-optimisation.
- > The boiler efficiency is calculated as total delivered heat per stoker cycle for activated and deactivated CO- λ -optimisation.

2023

Long-term verification - result overview

activated	31462	cycles	stoker cycles
CO-λ-optimisation	1154.8	h	operating hours
	2814.7	MWh	total delivered heat
	2.44	MW	mean thermal output
	11.18	cycles / MWh	

deactivated	36651	cycles	stoker cycles
CO-λ-optimisation	1310.6	h	operating hours
	3154.0	MWh	total delivered heat
	2.41	MW	mean thermal output
	11.62	cycles / MWh	

The modular CO- λ -optimisation reduced the fuel consumption by 3.8%.

Long-term verification - CO-emissions

Distribution of the CO-emissions with activated und deactivated CO- λ -optimisation

- period of consideration: one week

- comparative measurement with a flue gas analyser (ABB)

On average (median) the modular CO- λ -optimisation reduced the CO-emissions by 200 mg/m³ (standard conditions, 13 vol.% O₂).

Long-term verification - dust emissions (before electrostatic precipitator)

Summary and conclusions

The modular CO-λ-optimisation

- defines an optimal desired value for the O₂-controller of the biomass boiler.
- can be applied at all biomass boilers with existing O₂-controller.

During the long-term verification the modular CO- λ -optimisation

- reduced the fuel consumption by -3.8%
- reduced the average CO-emissions by -200 mg/m³
- reduced the total dust emissions on average by -19.5%

The modular CO- λ -optimisation improves the boiler's efficiency while simultaneously decreasing pollutant emissions.

Efficiency increase of biomass combustion systems by a modular CO- λ optimization: method and results from long-term verification

Central European Biomass Conference 2023 19th January 2023, Graz, Austria

Christopher Zemann, Alexander Max, Markus Gölles, Martin Horn

Bundesministerium Arbeit und Wirtschaft Energie, Mobilität, Innovation und Technologie

