Publikationen

Other Publications | 2012

Zustandsschätzung einer Biomassefeuerungsanlage und deren modellbasierte Regelung

Seeber, R. Zustandsschätzung einer Biomassefeuerungsanlage und deren modellbasierte Regelung, Master Thesis, Technische Universität Graz, Graz, Austria, 2012.

Details

Die Verbrennung fester Biomasse gewinnt als nachhaltige Form der Energienutzung zunehmend an Bedeutung. Dabei stellt die Forderung nach einem schadstoffarmen Betrieb von Biomassefeuerungsanlagen bei möglichst hohem Wirkungsgrad eine Herausforderung an deren Regelung dar. Ziel dieser Arbeit ist die Untersuchung und Verbesserung eines existierenden, modellbasierten Regelungskonzepts, welches die Methode der Eingangs-Ausgangslinearisierung zur Regelung sowie einen Erweiterten Kalmanfilter zur Zustandsschätzung vorsieht. Die Arbeiten wurden in Kooperation mit dem Kompetenzzentrum Bioenergy 2020+ anhand einer Versuchsanlage (Flachschubrostfeuerung mit einer Kesselnennleistung von 180 kW) durchgeführt. Dabei lassen sich eine Reihe von Störeinflüssen identifizieren, unter anderem etwa die bei dieser Anlage besonders stark ausgeprägten Schwankungen des abgebauten Brennstoffs. Die geeignete Berücksichtigung dieser Störeinflüsse im Kalmanfilter durch Formfilter wird untersucht. Ebenso erfolgt die Modellierung von variablen Totzeiten und Sensordynamiken, die bei der Messung einzelner Größen auftreten, durch zusätzliche Sensormodelle. Auf Basis dieser Ergebnisse wird ein neuer Kalmanfilter vorgeschlagen und implementiert. Die auftretenden Störeinflüsse führen bei der exakt linearisierten Strecke zu einer Abweichung vom geforderten linearen Übertragungsverhalten. Daher wird auch der Regler dahingehend modifiziert, dass die vom Kalmanfilter rekonstruierten Störgrößen bei der Ermittlung des nichtlinearen Zustandsregelgesetzes verwendet werden. Das modifizierte Regelungskonzept wurde abschließend an der untersuchten Anlage implementiert und experimentell verifiziert. Dabei wurden gegenüber der ursprünglichen Regelung eine deutliche Verbesserung bei der Stabilisierung von Vorlauf- und Sekundärzonentemperatur sowie eine geringere Abweichung des Verbrennungsluftverhältnisses im Brennstoffbett vom vorgegebenen Sollwert erzielt.

Conference presentations and posters | 2010

Wooden Biofuels in Europe – Quantities and Corrosion Relevant Characteristics.

Schmidl C, Humel S, Haslinger W, Friedl G. Wooden Biofuels in Europe – Quantities and Corrosion Relevant Characteristics, 18th European Biomass Conference 2010, 3rd-7th of May 2010, Lyon, France. p 308-315.

Details
Other papers | 2014

Wood Gas Processing To Generate Pure Hydrogen Suitable for PEM Fuel Cells

Fail S, Diaz N, Benedikt F, Kraussler M, Hinteregger J, Bosch K, et al. Wood gas processing to generate pure hydrogen suitable for PEM fuel cells. ACS Sustainable Chemistry and Engineering. 2014;2(12):2690-8.

External Link Details

A test campaign was carried out to generate renewable hydrogen based on wood gas derived from the commercial biomass steam gasification plant in Oberwart, Austria. The implemented process consisted of four operation units: (I) catalyzed water-gas shift (WGS) reaction, (II) gas drying and cleaning in a wet scrubber, (III) hydrogen purification by pressure swing adsorption, and (IV) use of the generated biohydrogen (BioH2) in a proton exchange membrane (PEM) fuel cell. For almost 250 h, a reliable and continuous operation was achieved. A total of 560 (Ln dry basis (db))/h of wood gas were extracted to produce 280 (Ln db)/h of BioH2 with a purity of 99.97 vol %db. The catalyzed WGS reaction enabled a hydrogen recovery of 128% (nBioH2)/(nH2,wood gas) over the whole process chain. An extensive chemical analysis of the main gas components and trace components (sulfur, CxHy, and ammonia) was carried out. No PEM fuel cell poisons were measured in the generated BioH2. The only detectable impurities in the product were 0.02 vol %db of O2 and 0.01 vol %db of N2. © 2014 American Chemical Society.

Other Publications | 2023

Wastewater2Hydrogen

Biotechnological Hydrogen Production from Industrial Wastewater

Neubauer M, Pummer R, Neuhauser W, Bauer L, Fuchs W, Drosg B. Wastewater2Hydrogen. BEST Center Day. 28 June 2023

Download PDF Details

Global hydrogen production is currently still based almost exclusively on fossil resources. A sustainable
hydrogen industry must be based on sustainable, renewable energy sources and resources.

Other papers | 2017

Wasserstoff aus Biomasse - Stand der Technik und Perspektiven

Hofbauer H, Bosch K, Kraussler M. Wasserstoff aus Biomasse - Stand der Technik und Perspektiven. 5th Central European Biomass Conference (oral presentation). January 2017, Graz, Austria.

Details
Conference presentations and posters | 2020

Virtual biomass combustion plant

Schulze K, Virtual biomass combustion plant. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Conference presentations and posters | 2012

Verwertung von Reststoffen aus der Lebensmittelproduktion zur Gewinnung von Prozessenergie.

Drosg B, Ortner M, Bochmann G. Verwertung von Reststoffen aus der Lebensmittelproduktion zur Gewinnung von Prozessenergie, Lebensmittel-Cluster Oberösterreich „ Strom - Wärme - Kälte - Wege zum energieeffizienteren Lebensmittelbetrieb“ 2012, 21th of March 2012, Linz, Austria.

Details
Conference presentations and posters | 2012

Vergleichsanalyse der Vergasung eines biogen und fossil angereicherten EBS

Sommer M, Ragoßnig AM, Kleinhappl M. Vergleichsanalyse der Vergasung eines biogen und fossil angereicherten EBS, DepoTech 2012, 6th-9th of October 2012, Leoben, Austria.

Details
Conference presentations and posters | 2022

Vereinfachung von Absorptionskälteanlagen-Modellen

Wernhart MW, Rieberer R, Staudt S, Unterberger V, Gölles M. Vereinfachung von Absorptionskälteanlagen-Modellen. Deutsche Kälte- und Klimatagung 2022: DKV-Tagung 2022. 18. November 2022. Magdeburg, Germany.

Details
Peer reviewed papers | 2015

Ventilation of Carbon Monoxide from a Biomass Pellet Storage Tank - A Study of the Effects of Variation of Temperature and Cross-Ventilation on the Efficiency of Natural Ventilation

Emhofer W, Lichtenegger K, Haslinger W, Hofbauer H, Schmutzer-Roseneder I, Aigenbauer S, et al. Ventilation of carbon monoxide from a biomass pellet storage tank - A study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation. Ann Occup Hyg. 2015;59(1):79-90.

External Link Details

Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (<30 tons storage capacity) residential pellet storage facilities, ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m3h-1, depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © 2014 © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

Other papers | 2012

Variation of Feedstock in a Dual Fluidized Bed Steam Gasifier ‐ Influence on Product Gas, Tar Content and Composition

Schmid JC, Wolfesberger U, Koppatz S, Pfeifer C, Hofbauer H. Variation of feedstock in a dual fluidized bed steam gasifier-influence on product gas, tar content, and composition. Environmental Progress and Sustainable Energy. 2012;31(2):205-15.

External Link Details

A steam blown dual fluidized bed gasification plant was used to yield a nitrogen (N 2) free product gas (synthesis gas) from various biomass fuels. In addition to the variation of process parameters like temperature, steam to carbon ratio, fluidization rate, and the influence of different bed materials, various feedstock inputs affected the generation of the product gas. This study focuses on the gasification of different biomass feedstock. The variation of biomass implies wood chips, wood pellets, sewage sludge pellets, and straw pellets. The chosen evaluated experimental results are all gained from the uniformly operated "classical" 100 kW "DUAL FLUID" gasifier at Vienna University of Technology at constant gasification temperatures between 800°C and 810°C. In the "classical" design, the gasification reactor is a bubbling fluidized bed. The composition and ash melting behavior of each feedstock is displayed, as well as the ranges of the product gas compositions generated. Beside the main gaseous product gas components, typical content ranges of dust and char are highlighted. The content and composition of tar in the product gas is discussed. Further it is possible to present gravimetrical and gas chromatography coupled with mass spectrometry measured tar values. Not less than five significant component-groups of tar will also be outlined for each feedstock. © 2012 American Institute of Chemical Engineers (AIChE).

Peer reviewed papers | 2021

Valorisation of starch wastewater by anaerobic fermentation

Drosg B, Neubauer M, Marzynski M, Meixner K. Valorisation of starch wastewater by anaerobic fermentation. Applies Sciences (Switzerland). 2021.11(21):10482.

External Link Details

Starch production is mainly focused on feedstocks such as corn, wheat and potato in the EU, whereas cassava, rice, and other feedstocks are utilised worldwide. In starch production, a high amount of wastewater is generated, which accumulates from different process steps such as washing, steeping, starch refining, saccharification and derivatisation. Valorisation of these wastewaters can help to improve the environmental impact as well as the economics of starch production. Anaerobic fermentation is a promising approach, and this review gives an overview of the different utilisation concepts outlined in the literature and the state of the technology. Among bioenergy recovery processes, biogas technology is widely applied at the industrial scale, whereas biohydrogen production is used at the research stage. Starch wastewater can also be used for the production of bulk chemicals such as acetone, ethanol, butanol or lactic acids by anaerobic microbes.

Peer reviewed papers | 2016

Valorisation of slaughter house and deinking paper waste streams for the production of enzyme by Trichoderma reesei

Weiss R, Eischer A, Tadic T, Gritsch SM, Ortner M, Prall K, Neunteufel E, Putz RF, Guebitz GM, Nyanhongo GS. Valorisation of slaughter house and deinking paper waste streams for the production of enzyme by Trichoderma reesei. Journal of Cleaner Production. 2020;275:122882

External Link Details

The study investigates for the first time the possibility of using carbon rich paper recovery sludge, and nitrogen rich meat processing industry waste as cultivation medium for the production of high value enzymes needed in the respective industries. The complex cellulose rich deinking sludge was able to support the growth of many industrially relevant enzyme producing microorganisms (Bacillus licheniformis, Candida cylindracea, Aspergillus oryzae, Trichoderma reesei) and of recombinant enzyme producers (Escherichia coli and Pichia pastoris). Further detailed studies with Trichoderma reesei as model organism demonstrated that the organism was able to grow optimally in the presence of 40gL-1 paper sludge as carbon source and 67.5 gL-1 pasteurised blood as nitrogen source substituted in Mandels medium. Under these conditions cellulase activities up to 28.1 nkat FPU were achieved. Anyhow, to achieve these results pretreatment of both waste streams is inevitable. In summary, this study provides the practical basis for a valorisation systems of paper industry waste to produce valuable enzymes to be used on-site in paper processing or for other purposes.

Conference presentations and posters | 2010

Valorisation of low grade Biomass to substitute fossil Fuels in a thermal Power Plant

Kern S, Halwachs M, Hofbauer H, Kampichler G. Valorisation of low grade Biomass to substitute fossil Fuels in a thermal Power Plant, WasteEng 2010, 17th-19th of May 2010, Peking, China.

Details

Minimizing carbon dioxide emissions whereas keeping up the high living standard of today is only possible by increasing the efficiency of energy consumption and the change to a mix of renewable fuels. Huge amounts of unused biomass in terms of agricultural residues like straw, that is a cheap and local feedstock, are often available. But as a reason of the high amount of corrosive ash elements (K, Cl, S), the residues are not suitable for co-firing in a thermal power plant. Therefore the feedstock is converted by low temperature pyrolysis into pyrolysis gases and charcoal. The aim of this work is to obtain fundamentals for an advanced pyrolysis model approach by the results of the pilot plant for co-firing the pyrolysis gases in a thermal power plant. A 3 MW pyrolysis pilot plant is being operated since 2008. For the process, an externally heated rotary kiln reactor with a design fuel power of 3 MW is used. Several mass and energy balances have been calculated based on measured plant data for different operating points of the pilot plant. The high amount of pyrolysis oil in the gas has positive effects to the heating value of the pyrolysis gases. As a reason of that, cold gas efficiencies of more than 70 % are possible. Based on these results, a scale up to a next scale pyrolysis reactor with a capacity of 30 MWth fuel input is currently investigated.

Conference presentations and posters | 2020

Valorisation of industrial by-products from the pulp&paper and rendering industry

Ortner M, Valorisation of industrial by-products from the pulp&paper and rendering industry. 6th Central European Biomass Conference, 22-24 January 2020, Graz.

Download PDF Details
Other papers | 2011

Validation of flow simulation and gas combustion sub-models for CFD-based prediction of NOx formation in biomass grate furnaces

Zahirović S, Scharler R, Kilpinen P, Obernberger I. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combustion Theory and Modelling. 2011;15(1):61-87.

External Link Details
Other papers | 2010

Validation of flow simulation and gas combustion sub-models for CFD-based prediction of NOx formation in biomass grate furnaces

Zahirović S, Scharler R, Kilpinen P, Obernberger I. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combustion Theory and Modelling. 2011;15(1):61-87.

External Link Details

While reasonably accurate in simulating gas phase combustion in biomass grate furnaces, CFD tools based on simple turbulence-chemistry interaction models and global reaction mechanisms have been shown to lack in reliability regarding the prediction of NOx formation. Coupling detailed NOx reaction kinetics with advanced turbulence-chemistry interaction models is a promising alternative, yet computationally inefficient for engineering purposes. In the present work, a model is proposed to overcome these difficulties. The model is based on the Realizable k-ε model for turbulence, Eddy Dissipation Concept for turbulence-chemistry interaction and the HK97 reactionmechanism. The assessment of the sub-models in terms of accuracy and computational effort was carried out on three laboratory-scale turbulent jet flames in comparison with the experimental data. Without taking NOx formation into account, the accuracy of turbulence modelling and turbulence-chemistry interaction modelling was systematically examined on Sandia Flame D and Sandia CO/H2/N2 Flame B to support the choice of the associated models. As revealed by the Large Eddy Simulations of the former flame, the shortcomings of turbulence modelling by the Reynolds averaged Navier-Stokes (RANS) approach considerably influence the prediction of the mixing-dominated combustion process. This reduced the sensitivity of the RANS results to the variations of turbulence-chemistry interaction models and combustion kinetics. Issues related to the NOx formation with a focus on fuel bound nitrogen sources were investigated on a NH3-doped syngas flame. The experimentally observed trend in NOx yield from NH3 was correctly reproduced by HK97, whereas the replacement of its combustion subset by that of a detailed reaction scheme led to a more accurate agreement, but at increased computational costs. Moreover, based on results of simulations with HK97, the main features of the local course of the NOx formation processes were identified by a detailed analysis of the interactions between the nitrogen chemistry and the underlying flow field. © 2011 Taylor & Francis.

Other papers | 2015

Validation of a Kinetic Model for the Catalyzed Water Gas Shift Reaction Applying a Fe/Cr Catalyst Processing Wood Gas from Biomass Steam Gasification

Kraussler M, Fail S, Plaza Quevedo A, Cortes Guerro JA, Rauch R, Hofbauer H. Validation of a Kinetic Model for the Catalyzed Water Gas Shift Reaction Applying a Fe/Cr Catalyst Processing Wood Gas from Biomass Steam Gasification. 23rd European Biomass Conference & Exhibition (Poster). June 2015, Vienna, Austria.

Details
Peer reviewed papers | 2015

Use of Hazelnut's Pruning to Produce Biochar by Gasifier Small Scale Plant

Colantoni A, Longo L, Evic N, Gallucci F, Delfanti L. Use of Hazelnut‟s Pruning to Produce Biochar by Gasifier Small Scale Plant. International Journal of Renewable Energy Research. 2015;5(3):873-878.

External Link Details

Biochar is the product of biomass pyrolysis and gasification. One of the possible application of this product is certainly in agronomic sector, as soil amendment. However biochar use in Italy is subordinated to insert this product in fertilizer list, which biochar could be commercialized with. The aim of this paper is to know the biochar from gasification process (using an Imbert downdraft prototype), in particular investigating its potentiality as soil amendment in terms of European and Italian regulations and in terms of physical and chemical characterizations.

Other papers | 2017

Upscaling and Operation of a Biomass Derived Fischer-Tropsch Pilot Plant Producing 1 Barrel Per Day

Loipersböck J, Weber G, Rauch R, Gruber H, Groß P, Hofbauer H. Upscaling and Operation of a Biomass Derived Fischer-Tropsch Pilot Plant Producing 1 Barrel Per Day. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.

Details
Other Publications | 2013

Untersuchung von Wirbelschichtbettmateralien mittels einer Kinetikapparatur

Yildiz, B. Determination of effects of different bed materials on steam reforming for tar reduction, Master Thesis, Vienna University of Technology, Vienna, Austria, 2013.

Details
Other Publications | 2013

Untersuchung verschiedener Zugverhältnisse auf die Praxisrelevanz der Prüfung von Scheitholzöfen nach EN 13240

Stressler, H. Untersuchung verschiedener Zugverhältnisse auf die Praxisrelevanz der Prüfung von Scheitholzöfen nach EN 13240, Bachelor Thesis, FH Oberösterreich, Wels, Österreich, 2013.

Details
Other Publications | 2008

Untersuchung der Staubemissionen einer Prototyp Strohpelletsfeuerung, sowie Ermittlung des Potentials einer Emissionsreduktion durch einen Brennwertwärmetauscher mit Wäscher

Schwabl, M. Untersuchung der Staubemissionen einer Prototyp Strohpelletsfeuerung, sowie Ermittlung des Potentials einer Emissionsreduktion durch einen Brennwertwärmetauscher mit Wäscher, Master Thesis, Technische Universität Wien, Vienna, Austria, 2008.

Details

The primary energy consumption world-wide is rising constantly. Therefore it is necessary to open up renewable resources for energy production. Besides wood, the application of agricultural resources and residuals for energy production is possible, also within the range of small scale combustion units. These fuels still pose a challenge, concerning gaseous and particulate emissions. This work examines the application of straw pellets in a small scale combustion unit. Gaseous and particulate emissions, as well as the separation eciency of a secondary heat exchanger with scrubber were investigated. Compared with wood-like fuels a strong slagging of the combustion chamber could be determined. Gaseous emissions as NOx, SO2 and HCl, as well as the emission of particles were clearly higher than with combustions of wood. The gaseous emissions were below the considered limit value for other biogenous fuels after Art. 15 a B-VG 2007 [1]. The burnout of the gaseous phase, which can be evaluated by the emission of CO, was always good and comparable with the combustion of wood.
Using a secondary heat exchanger with scrubber (Hydrocube R of the company Schräder ) particulate emissions could be reduced by 20%. Element analysis of the particulate emissions as well as particle size measurements showed that primarily large particles were separated. A retrot of the Hydrocube R by an ionizing electrode increased the degree of separation on 60%. Besides the separation of particles, the Hydrocube R also reduced gaseous emissions like SO2 and HCl. The absorption of these components in the condensate phase caused a decrease of the pH value. Low ph value increased the corrosion of the Hydrocube R , what could be detected by rising concentrations on Fe, Ni and Cr in the condensate.

Other Publications | 2009

Untersuchung der Fördercharakteristik von Schneckenförderern für eine Pelletabwurffeuerung

Ohnmacht, R. Untersuchung der Fördercharakteristik von Schneckenförderern für eine Pelletabwurffeuerung, Master Thesis, Technologische Universität Wien, Vienna, Austria, 2009.

Details
Peer reviewed papers | 2022

Unknown Input Observer Design for Linear Time-Invariant Systems - A Unifying Framework

Tranninger M, Niederwieser H, Seeber R, Horn M. Unknown Input Observer Design for Linear Time-Invariant Systems - A Unifying Framework. International Journal of Robust and Nonlinear Control. 2022 Nov 18. https://doi.org/10.1002/rnc.6399

External Link Details

This article presents a new observer design approach for linear time invariant multivariable systems subject to unknown inputs. The design is based on a transformation to the so-called special coordinate basis (SCB). This form reveals important system properties like invertability or the finite and infinite zero structure. Depending on the system's strong observability properties, the SCB allows for a straightforward unknown input observer design utilizing linear or nonlinear observers design techniques. The chosen observer design technique does not only depend on the system properties, but also on the desired convergence behavior of the observer. Hence, the proposed design procedure can be seen as a unifying framework for unknown input observer design.

Peer reviewed papers | 2022

Unknown input observer design for linear time-invariant multivariable systems based on a new observer normal form

Niederwieser H, Tranninger M, Seeber R, Reichhartinger M. Unknown input observer design for linear time-invariant multivariable systems based on a new observer normal form. International Journal of Systems Science. 2022 Apr 6. https://doi.org/10.1080/00207721.2022.2046201

External Link Details

In various applications in the field of control engineering, the estimation of the state variables of dynamic systems in the presence of unknown inputs plays an important role. Existing methods require the so-called observer matching condition to be satisfied, rely on the boundedness e variables or exhibit an increased observer order of at least twice the plant order. In this article, a novel observer normal form for strongly observable linear time-invariant multivariable systems is proposed. In contrast to classical normal forms, the proposed approach also takes the unknown inputs into account. The proposed observer normal form allows for the straightforward construction of a higher-order sliding mode observer, which ensures global convergence of the estimation error within finite time even in the presence of unknown bounded inputs. Its application is not restricted to systems which satisfy the aforementioned limitations of already existing unknown input observers. The proposed approach can be exploited for the reconstruction of unknown inputs with bounded derivative and robust state-feedback control, which is shown by means of a tutorial example. Numerical simulations confirm the effectiveness of the presented work.

Conference presentations and posters | 2009

Unearthing waste`s potential for 100% renewable energy systems

Ragossnig A. Unearthing waste`s potential for 100% renewable energy systems. 5th SDEWES-conference 2009, 29th of September-3rd of October, Dubrovnik, Croatia.

Details

This paper focusses on the elaboration of the potential of the waste sector to contribute to the provision of 100% renewable energy systems. Waste is an abundant and locally available ressource and in many cases it is (at least partially) of biogenic origin, therefore pursuing political goals in waste management by energetic utilization of waste contributes towards achieving political goals in the energy as well as climate policy, too. However, it is shown based on the example of Austria that looking at energy systems on a national or international scale the waste sector is only able to contribute very little to the provision of the overall energy needed. It is different if one looks at specific energy systems in industrial sectors or on individual industrial sites. Here one must aknowledge that the energetic utilization of waste can have a high impact towards establishing renewable energy systems. Exemplarily this is shown by discussing the Austrian pulp & paper as well as the cement industry sector.

Peer reviewed papers | 2021

Ultra-low temperature water-gas shift reaction catalyzed by homogeneous Ru-complexes in a membrane reactor - membrane development and proof of concept

Logemann M, Wolf P, Loipersböck J, Schrade A, Wessling M, Haumann M. Ultra-low temperature water-gas shift reaction catalyzed by homogeneous Ru-complexes in a membrane reactor - membrane development and proof of concept. Catalysis Science and Technology. 2021.11(4):1558-1570. https://doi.org/10.1039/D0CY02111C

External Link Details

A monolithic membrane reactor combining the supported ionic liquid-phase (SILP) catalyzed ultra-low temperature water–gas shift reaction (WGSR) with in situ product removal is presented. The SILP catalyst consists of the transition metal complex [Ru(CO)3Cl2]2 homogeneously dissolved in 1-butyl-2,3-dimethylimidazolium chloride [C4C1C1Im]Cl and supported on alumina pellets. These Ru-SILP pellets are deposited inside the channels of a silicon carbide monolith. The resulting monolithic catalyst is very active and stable in the WGSR in the temperature range between 120 and 160 °C, thereby making full use of the high equilibrium conversion at these conditions. A facilitated transport membrane was coated onto the smooth outside of the SiC monolith to allow preferential removal of CO2 compared to H2. The proof of this concept has been shown under industrially relevant conditions using a biogas feed. These results demonstrate, for the first time, the combination of homogeneous SILP catalyzed WGSR with enhanced in situ removal of one of the products (here: CO2) via facilitated transport membrane separation.

Peer reviewed papers | 2016

Two-stage cultivation of N-rich and N–deprived Acutodesmus obliquus biomass: Influence of cultivation and dewatering methods on microalgal biomass used in anaerobic digestion

Gruber M, Nussbaumer M, Jerney J, Ludwig I, Zohar E, Lang I, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B. Two-stage cultivation of N-rich and N–deprived Acutodesmus obliquus biomass: Influence of cultivation and dewatering methods on microalgal biomass used in anaerobic digestion. Algal Research. July 2016;17: 105-112.

External Link Details
Other Publications | 2013

Two-Stage Anaerobic Digestion of Sugar Beet Pressed Pulp - Optimizing of reactor performance

Stoyanova E et al. Two-Stage Anaerobic Digestion of Sugar Beet Pressed Pulp - Optimizing of reactor performance, 13th World Congress on Anaerobic Digestion 2013, 25th-28th of June 2013, Santiago de Compostela, Spain. (peer reviewed) (visual presentation)

Details
Peer reviewed papers | 2022

Trickle-Bed Bioreactors for Acetogenic H2/CO2 Conversion

Steger F, Ergal I, Daubek A, Loibl N, Rachbauer L, Fuchs W, Rittmann SKMR, Bochmann G. Trickle-Bed Bioreactors for Acetogenic H2/CO2 Conversion. Frontiers in Energy Research. 8 Apirl 2022.10;842284

External Link Details

Acetic acid is an essential industrial building block and can be produced by acetogenic bacteria from molecular hydrogen (H2) and carbon dioxide (CO2). When gasses are supplied as substrates, bioreactor design plays an important role for their availability. Trickle-bed bioreactors (TBs) have an enhanced gas-to-liquid mass transfer and cells remain in the system by forming a biofilm on the carriers. So far, TBs have been investigated extensively for bio-methanation processes, whereas studies for their use in acetic acid production are rare. In this study, we evaluated the reproducibility of two parallel TBs for acetic acid production from H2:CO2 (= 70:30) by a mixed culture with a gas flow rate of 3.8 mL min−1 and a medium flow rate of 10 mL min−1. Additionally, the effect of glucose addition during the starting phase on the resulting products and microbial composition was investigated by setting up a third TB2. Partial medium exchanges to decrease the internal acetic acid concentration (AAC) combined with recycling of withdrawn cells had a positive impact on acetic acid production rates with maxima of around 1 g L−1 d−1 even at high AACs of 19–25 g L−1. Initial glucose addition resulted in the accumulation of unwanted butyric acid up to concentrations of 2.60 ± 0.64 g L−1. The maximum AAC of 40.84 g L−1 was obtained without initial glucose addition. The main families identified in the acetogenic TBs were Peptococcaceae, Ruminococcaceae, Planococcaceae, Enterobacteriaceae, Clostridiaceae, Lachnospiraceae, Dysgonomonadaceae and Tannerellaceae. We conclude that a TB is a viable solution for conversion of H2/CO2 to acetate using an anaerobic enrichment culture.

Conference presentations and posters | 2011

Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung

Pieber S, Ragossnig A, Sommer M, Meirhofer M, Curtis A, Pomberger R. Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details
Conference presentations and posters | 2010

Trends and opportunities of micro-CHP technologies based on biomass combustion

Obernberger I. Trends and opportunities of micro-CHP technologies based on biomass combustion, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. p 1-9.

Details
Conference presentations and posters | 2014

Transport Biofuels in Europe - A Vision for 2030

Wörgetter M. Transport Biofuels in Europe - A Vision for 2030, Fuels of the Future 2014, 20th-21st of January 2014, Berlin, Germany.

Details
Peer reviewed papers | 2020

Transient CFD simulation of wood log combustion in stoves

Scharler R, Gruber T, Ehrenhöfer A, Kelz J, Mehrabian Bardar R, Bauer T, Hochenauer C, Anca-Couce A. Transient CFD simulation of wood log combustion in stoves. Renewable Energy 2020.145:651-662

External Link Details

Wood log stoves are a common residential heating technology that produce comparably high pollutant emissions. Within this work, a detailed CFD model for transient wood log combustion in stoves was developed, as a basis for its optimization. A single particle conversion model previously developed by the authors for the combustion of thermally thick biomass particles, i.e. wood logs, was linked with CFD models for flow and turbulence, heat transfer and gas combustion. The sub-models were selected based on a sensitivity analysis and combined into an overall stove model, which was then validated by simulations of experiments with a typical wood log stove, including emission measurements. The comparison with experimental results shows a good accuracy regarding flue gas temperature as well as CO2 and O2 flue gas concentrations. Moreover, the characteristic behavior of CO emissions could be described, with higher emissions during the ignition and burnout phases. A reasonable accuracy is obtained for CO emissions except for the ignition phase, which can be attributed to model simplifications and the stochastic nature of stove operation. Concluding, the CFD model allows a transient simulation of a stove batch for the first time and hence, is a valuable tool for process optimization.

Peer reviewed papers | 2016

Toxicological characterization of particulate emissions from straw, Miscanthus, and poplar pellet combustion in residential boilers

Kasurinen S, Jalava PI, Uski O, Happo MS, Brunner T, Mäki-Paakkanen J, Jokiniemi J, Obernberger I, Hirvonen MR. Toxicological characterization of particulate emissions from straw, Miscanthus, and poplar pellet combustion in residential boilers. Aerosol Science and Technology. 2 January 2016;50(1): 41-51.

External Link Details

Wood pellets have been used in domestic heating appliances for three decades. However, because the share of renewable energy for heating will likely rise over the next several years, alternative biomass fuels, such as short-rotation coppice or energy crops, will be utilized. We tested particulate emissions from the combustion of standard softwood pellets and three alternative pellets (poplar, Miscanthus sp., and wheat straw) for their ability to induce inflammatory, cytotoxic, and genotoxic responses in a mouse macrophage cell line. Our results showed clear differences in the chemical composition of the emissions, which was reflected in the toxicological effects. Standard softwood and straw pellet combustion resulted in the lowest PM1 mass emissions. Miscanthus sp. and poplar combustion emissions were approximately three times higher. Emissions from the herbaceous biomass pellets contained higher amounts of chloride and organic carbon than the emissions from standard softwood pellet combustion. Additionally, the emissions of the poplar pellet combustion contained the highest concentration of metals. The emissions from the biomass alternatives caused significantly higher genotoxicity than the emissions from the standard softwood pellets. Moreover, straw pellet emissions caused higher inflammation than the other samples. Regarding cytotoxicity, the differences between the samples were smaller. Relative toxicity was generally highest for the poplar and Miscanthus sp. samples, as their emission factors were much higher. Thus, in addition to possible technical problems, alternative pellet materials may cause higher emissions and toxicity. The long-term use of alternative fuels in residential-scale appliances will require technological developments in both burners and filtration.

Conference presentations and posters | 2019

Towards the in house production of enzymes using processing waste

Weiss R, Nyanhongo G, Ortner M, Guebitz G.Towards the in house production of enzymes using processing waste. 15th International Conference on Renewable Resources and Biorefineries, Toulouse, FRANCE. June 2019.

Details
Conference presentations and posters | 2014

Towards a Stochastic Cellular Automata Model of Log Wood Combustion

Lichtenegger K, Schappacher W, Hebenstreit B, Schmidl C, Höftberger E. Towards a Stochastic Cellular Automata Model of Log Wood Combustion. Journal of Physics: Conference Series. 2014:490:102015. (peer reviewed)

Details

Describing the combustion of log wood and others solid fuels with complex geometry, considerable water content and often heterogenous struture is a nontrivial task. Stochastic Cellular Automata models offer a promising approach for modelling such processes. Combustion models of this type exhibit several similarities to the well-known forest fire models, but there are also significant differences between those two types of models. These differences call for a detailed analysis and the development of supplementary modeling approaches. In this
article we define a qualitative two-dimensional model of burning log wood, discuss the most important differences to classical forest fire models and present some preliminary results.

Conference presentations and posters | 2014

Torrefied pellets – influence of torrefaction on pellet characteristics and combustion behaviour

Pointner C, Schmutzer-Roseneder I, Feldmeier S, Kristöfel C, Ehrig R, Schwabl M, Strasser C, Wörgetter M. Torrefied pellets – influence of torrefaction on pellet characteristics and combustion behavior, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details
Conference presentations and posters | 2015

Time-resolved characterization of PM10 emissions from modern small scale biomass combustion units, including PAHs

Kistler M, Schmidl C, Cetintas EC, Padouvas E, Bauer H, Puxbaum H, Kasper-Giebl A. Time-resolved characterization of PM10 emissions from modern small scale biomass combustion units, including PAHs, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (visual presentation)

Details
Conference presentations and posters | 2019

Time-dependent catalytic activation of inactive k-feldspar by layer formation during fluidized bed conversion with residual fuels

Wagner C, Hammerl C, Kuba M, Hofbauer H. Time-dependent catalytic activation of inactive k-feldspar by layer formation during fluidized bed conversion with residual fuels. 27th European Biomass Conference & Exhibition (Poster). May 2019.

External Link Download PDF Details

Olivine is currently used as bed material in dual fluidized bed steam gasification due to its catalytic activity towards the water-gas-shift (WGS) reaction and tar reforming. However, olivine contains traces of heavy metals which necessitate an expensive disposal of the accruing ash. The study of alternative bed materials for DFB steam gasification is therefore of major importance. The activity of a bed material is one important factor when classifying its suitability. Several alternative bed materials like quartz and K-feldspar are non-active when fresh but become activated during operation by interaction with the ash by forming layers. The focus of this work was therefore to quantify the initial activation of K-feldspar over the first operational hours as exemplary inactive bed material. Bed material samples from fluidized bed combustion were collected during operation. The fuels used were bark, chicken manure and a bark/chicken manure mixture. The obtained samples were sieved to 200 – 250 µm and tested in a micro-scale test-rig regarding the WGS reaction. A time-dependent activation of K-feldspar was observed marking a first step in better understanding the activation of bed materials.

Conference presentations and posters | 2010

Thermogravimetric Analysis and Devolatilisation Kinetics of New Biomass Fuels

Moradi F, Brunner T, Obernberger I. Thermogravimetric Analysis and Devolatilisation Kinetics of New Biomass Fuels, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. (visual presentation)

Details
Peer reviewed papers | 2022

Thermodynamic Equilibrium Study on the Melting Tendency of the K-Ca-Mg-P-Si-O System with Relevance to Woody and Agricultural Biomass Ash Compositions

Falk J, Hannl TK, Skoglund N, Backman R, Öhman M. Thermodynamic Equilibrium Study on the Melting Tendency of the K-Ca-Mg-P-Si-O System with Relevance to Woody and Agricultural Biomass Ash Compositions. Energy and Fuels 7 July 2022.36(13):7035-7051.

External Link Details

A major challenge in the combustion of biomass fuels is the heterogeneity of ash-forming elements, which may cause a wide range of ash-related problems. Understanding the melting tendency of the coarse ash fractions is necessary to mitigate agglomeration and slagging. This work aims to evaluate the melting tendency of the K-Ca-Mg-Si-P-O system by use of thermodynamic equilibrium calculations. The formation of condensed phases were systematically assessed in a combustion atmosphere, varying temperatures, and composition. Compositional ranges were based on fuel ash data extracted from the Phyllis 2 database. The speciation and degree of polymerization of phosphates, silicates, and melts were evaluated and indicated a systematic variation in composition. The melt fraction was predicted as a function of temperature and composition. The melting tendency was modeled for three systems, i.e., a P-dominated, a Si-dominated, and a mixed Si-P system. Four ratios between K2O, CaO, MgO, SiO2, and P2O5 were found to have a large effect on the melting tendency of the ash mixtures: the ratio between network formers (SiO2, P2O5), K2O to total network modifiers, CaO to CaO + MgO, and the ratio of network formers to total ash oxides. This modeling approach showed qualitative agreement with ash-related issues seen in previous lab-scale experiments in bubbling fluidized bed and fixed bed combustion. Practical implications of the results are discussed from the perspective of fuel design with the aim of preventing ash-related problems. This study presents a novel method of applying thermodynamic equilibrium calculations for a broad range of compositions and shows potential for predicting ash-related issues related to the melting of coarse ash fractions.

Other papers | 2009

Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination

Fraissler G, Jöller M, Mattenberger H, Brunner T, Obernberger I. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chemical Engineering and Processing: Process Intensification. 2009;48(1):152-64.

External Link Details
Other papers | 2016

Thermochemische Behandlung eines niederkalorischen Reststoffes zur Gewinnung von Sekundärrohstoffen

Meirhofer M, Dißauer C, Strasser C, Kranner R, Wartha C. Thermochemische Behandlung eines niederkalorischen Reststoffes zur Gewinnung von Sekundärrohstoffen. e-nova 2016 (oral presentation). November 2016, Pinkafeld, Austria.

Details
Peer reviewed papers | 2020

Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation

Hannl TK, Sefidari H, Kub M, Skoglund N, Öhmann M. Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation. Biomass Conversion and Biorefinery.2020

External Link Details

The necessity of recycling anthropogenically used phosphorus to prevent aquatic eutrophication and decrease the economic dependency on mined phosphate ores encouraged recent research to identify potential alternative resource pools. One of these resource pools is the ash derived from the thermochemical conversion of sewage sludge. This ash is rich in phosphorus, although most of it is chemically associated in a way where it is not plant available. The aim of this work was to identify the P recovery potential of ashes from sewage sludge co-conversion processes with two types of agricultural residues, namely wheat straw (rich in K and Si) and sunflower husks (rich in K), employing thermodynamic equilibrium calculations. The results indicate that both the melting behavior and the formation of plant available phosphates can be enhanced by using these fuel blends in comparison with pure sewage sludge. This enhanced bioavailability of phosphates was mostly due to the predicted formation of K-bearing phosphates in the mixtures instead of Ca/Fe/Al phosphates in the pure sewage sludge ash. According to the calculations, gasification conditions could increase the degree of slag formation and enhance the volatilization of K in comparison with combustion conditions. Furthermore, the possibility of precipitating phosphates from ash melts could be shown. It is emphasized that the results of this theoretical study represent an idealized system since in practice, non-equilibrium influences such as kinetic limitations and formation of amorphous structures may be significant. However, applicability of thermodynamic calculations in the prediction of molten and solid phases may still guide experimental research to investigate the actual phosphate formation in the future.

Other Publications | 2014

Thermo-chemical pre-treatment of brewers' spent grains

Gorter S, Rachbauer L, Scheidl S, Gabauer W, Ortner M, Bochmann G. Thermo-chemical pre-treatment of brewers' spent grains, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details
Conference presentations and posters | 2019

Thermal Trouble: Challenges in Optimization and Evaluation of Thermal Energy Systems

Lichtenegger K, Unterberger V, Stadler M, Zellinger M, Carreras F, Moser A. Thermal Trouble: Challenges in Optimization and Evaluation of Thermal Energy Systems. IAPE 2019 : International Conference on Innovative Applied Energy (oral presentation). March 2019.

Details
Peer reviewed papers | 2016

Thermal Stability of Bed Particle Layers on Naturally Occurring Minerals from Dual Fluid Bed Gasification of Woody Biomass

Kuba M, He H, Kirnbauer F, Skoglund N, Boström D, Öhman M, Hofbauer H. Thermal Stability of Bed Particle Layers on Naturally Occurring Minerals from Dual Fluid Bed Gasification of Woody Biomass. Energy & Fuels. 20 October 2016;30(10): 8277-8285.

External Link Details

The use of biomass as feedstock for gasification is a promising way of producing not only electricity and heat but also fuels for transportation and synthetic chemicals. Dual fluid bed steam gasification has proven to be suitable for this purpose. Olivine is currently the most commonly used bed material in this process due to its good agglomeration performance and its catalytic effectiveness in the reduction of biomass tars. However as olivine contains heavy metals such as nickel and chromium no further usage of the nutrient-rich ash is possible and additional operational costs arise due to necessary disposal of the ash fractions. This paper investigates possible alternative bed materials and their suitability for dual fluid bed gasification systems focusing on the behavior of the naturally occurring minerals olivine, quartz and K-feldspar in terms of agglomeration and fractionation at typical temperatures. To this end samples of bed materials with layer formation on their particles were collected at the industrial biomass combined heat and power (CHP) plant in Senden, Germany, which uses olivine as the bed material and woody biomass as feedstock. The low cost logging residue feedstock contains mineral impurities such as quartz and K-feldspar which become mixed into the fluidized bed during operation. Using experimental analysis and thermochemical it was found that the layers on olivine and K-feldspar showed a significantly lower agglomeration tendency than quartz. Significant fractionation of particles or their layers could be detected for olivine and quartz, whereas K-feldspar layers were characterized by a higher stability. High catalytic activity is predicted for all three minerals once Ca-rich particle layers are fully developed. However quartz may be less active during the build-up of the layers due to lower amounts of Ca in the initial layer formation.
 

Conference presentations and posters | 2014

Thermal simulation of a pellet boiler and a heat storage tank for future control strategies

Schnetzinger R, Musumarra I, Hebenstreit B, Lichtenegger K, Schwarz M, Höftberger E. Thermal simulation of a pellet boiler and a heat storage tank for future control strategies, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details
Reports | 2019

Thermal Gasification of low-grade residuals for the production of valuable products and energy

Wagner K, Kuba M, Fuchs J, Müller S. Thermal Gasification of low-grade residuals for the production of valuable products and energy. Publishable final report. June 2019.

Details
Conference presentations and posters | 2010

Thermal Conversion of Biomass by Microwave Energy - First Results with Wood

Schrammel G, Paisler C, Krug H, Rauch R, Hofbauer H. Thermal Conversion of Biomass by Microwave Energy - First Results with Wood, 18th European Biomass Conference and Exhibiton 2010, 3rd-7th May 2010, Lyon, France. p 907-910.

Details

By using a microwave generator as energy source wood gets converted into three products: (1) condensate (“product oil”), (2) product gas and (3) charcoal (“material residue”). In this microwave-based specific kind of pyrolysis process wood is used as standard input material in order to have the possibility to compare the three generated products either with products of already established conventional pyrolysis processes [1] or other processes like gasification within thermo-chemical conversion [2]. Therefore, a discontinuous microwave apparatus of technical standard size (magnetron power: 6 kW, magnetron frequency: 2.45 GHz) is used.

Other papers | 2016

The wood pellet market in Austria: A structural market model analysis

Christa Kristöfel, Christoph Strasser, Erwin Schmid, Ulrich B. Morawetz, The wood pellet market in Austria: A structural market model analysis, Energy Policy, Volume 88, January 2016, Pages 402-412,

External Link Details
Peer reviewed papers | 2016

The Virtual Biomass Grate Furnace - An Overall CFD Model for Biomass Combustion Plants

Ali Shiehnejadhesar, Ramin Mehrabian, Robert Scharler, Christoph Hochenauer. The Virtual Biomass Grate Furnace - An Overall CFD Model for Biomass Combustion Plants. 24rd European Biomass Conference & Exhibition (poster).

External Link Details

This paper presents the virtual biomass grate furnace, which comprises of comprehensive CFD models of all relevant processes for the simulation of biomass grate furnaces. The models consist of a 3D packed bed model, a gas phase combustion model for laminar to highly turbulent flows and a model to account for the influence of the flue gas streaks arising from the fuel bed in the freeboard. The simulation results of a 20 kW underfeed stoker furnace show that the overall CFD model is able to provide valuable insight on the processes occurring in the packed bed and freeboard and their interactions.

Peer reviewed papers | 2015

The Role of Leak Air in a Double-Wall Chimney

Lichtenegger K, Hebenstreit B, Pointner C, Schmidl C, Höftberger E. The role of leak air in a double-wall chimney. Heat Mass Transfer. 2015;51(6):787-94.

External Link Details

In modern buildings with tight shells, often room-independent air supply is required for proper operation of biomass stoves. One possibility to arrange this supply is to use a double-wall chimney with flue gas leaving through the pipe and fresh air entering through the annular gap. A one-dimensional quasi-static model based on balance equations has been developed and compared with experimental data. Inclusion of leak air is crucial for reproduction of the experimental results. © 2014, Springer-Verlag Berlin Heidelberg.

Other papers | 2015

The role of 1H-indene in product gas of biomass gasification

Kuba M, Kirnbauer F, Hofbauer H. The role of 1H-indene in product gas of biomass gasification. International Bioenergy Exhibition and Asian Bioenergy Conference 2015. October 2015, Shanghai, China.

Details
Other papers | 2021

The robust exact differentiator toolbox revisited: Filtering and discretization features.

Andritsch B, Horn M, Koch S, Niederwieser H, Wetzlinger M, Reichhartinger M. The robust exact differentiator toolbox revisited: Filtering and discretization features. in 2021 IEEE International Conference on Mechatronics, ICM 2021. Institute of Electrical and Electronics Engineers. 2021. 9385675 https://doi.org/10.1109/ICM46511.2021.9385675

External Link Details

An extended version of a Simulink ® -block providing on-line differentiation algorithms based on discretized sliding-mode concepts is presented. Based on user-specified settings it computes estimates of the time-derivatives of the input signal up to order ten. Different discrete-time estimation algorithms as well as optional filtering properties can be selected. The paper includes an overview of the implemented algorithms, a detailed explanation of the developed Simulink ® -block and two examples. The first example illustrates the application of the toolbox in a numerical simulation environment whereas the second one shows results obtained via an electrical laboratory setup.

Conference presentations and posters | 2010

The present state and future development of industrial biomass combustion for heat and power generation

Obernberger I. The present state and future development of industrial biomass combustion for heat and power generation, ASME-ATI-UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems 2010, 16th-19th of May 2010, Sorrento, Italy.

Details
Other papers | 2012

The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier

Kirnbauer F, Wilk V, Kitzler H, Kern S, Hofbauer H. The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier. Fuel. 2012;95:553-562.

Details

The utilization of biomass for the substitution of fossil fuels to reduce greenhouse gas emissions in biomass steam gasification plants is a promising technology for the production of electricity, heat, and fuels for transportation. Experience from industrial scale dual fluidized bed steam gasification plants showed a modification of the bed material due to the interaction of the bed material (olivine) with biomass ash components and additives. In this paper the influence of bed material modification on the gasification properties of used olivine from an industrial scale plant in Güssing is compared with the case of fresh olivine. The trials were carried out under similar conditions in a pilot plant at the Vienna University of Technology. The pilot plant trials showed an increase in hydrogen and carbon dioxide in the product gas with the used bed material while the content of carbon monoxide in the product gas decreased. The exothermal water–gas shift reaction is enhanced by the used bed material, resulting in a lower energy demand for the gasification. Tar content was decreased by around 80% for tars detected by gas chromatography–mass spectrometry (GCMS) and the composition of the tar showed less components during the trial with used bed material.

The results obtained with the used bed material at the 100 kW pilot plant are in good agreement with those for the 8 MW industrial plant in Güssing, confirming good scale-up properties from the 100 kW plant to industrial scale plants.

Conference presentations and posters | 2020

The modification of biogenic carbon-rich solids opens new possibilities

Martini S, Kienzl N, Ortner M, Loipersböck J. The modification of biogenic carbon-rich solids opens new possibilities. Biochar Workshop @ 6th Central European Biomass Conference (oral presentation). 2020.

External Link Details
Other papers | 2013

The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization

Kirnbauer F, Hofbauer H. The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization. Powder Technol. 2013;245:94-104.

External Link Details

The bed material and especially its catalytic activity plays an important role in biomass steam gasification in dual fluidized bed gasifiers. The bed material is modified by interaction with biomass ash during operation of the gasification plant forming layers at the particles which are induced by the biomass ash. Optimization of dual fluidized biomass steam gasification will have significant influence on the process variables such as temperatures, inorganic composition and product gas composition. The influence of these changes on layer formation is still unknown. This paper summarizes results of investigations about bed material characteristics taken from the industrial-scale biomass steam gasification plant in Güssing where woody biomass is used as fuel. Analyses of the surface and the crystal structures of the bed material particles treated in gasification and combustion atmospheres were carried out. The thermal behavior of used olivine and fresh olivine in different atmospheres was analyzed. A suggestion for the mechanism of formation of the layers is presented and the influence of possible optimization measures is discussed. A change in the elemental composition of the surface was not detectable but a slight change in the crystal structure. Thermal investigations show a weak endothermic weight loss with used olivine in a CO2-rich atmosphere which could not be determined with fresh olivine. The formation of layers at the olivine particles is considered to be caused by the intensive contact with burning char particles in the combustion reactor. © 2013 Elsevier B.V.

Peer reviewed papers | 2016

The interplay of self-reflection, social interaction and random events in the dynamics of opinion flow in two-party democracies

Lichtenegger K, Hadzibeganovic T. The interplay of self-reflection, social interaction and random events in the dynamics of opinion flow in two-party democracies. International Journal of Modern Physics C. 1 May 2016;27(5).

External Link Details
We propose a continuous process opinion formation model to study the dynamics of a multi-level relationship between voters, political parties, and facts in two-party democratic elections. In our model, opinions can take any real value between two extremes and an unaligned, moderate opinion state without a preference. Starting with a random opinion configuration, individual voter opinions evolve and change over time due to self-reflection, inter-personal communication, external media influence, and noise. Parties are influenced by their own ideologies, facts, and voters’ opinions. Elections are held periodically and the party that is closer in opinion to the majority of voters forms the new government. The government policy is then expected to be in proximity to the voter opinions and the policies of the currently ruling political party. We analyze the tension of opinions as a measure of how dramatically opinions can disagree within a given sample of voters and the success of the government and parties as the degree of coincidence between the policies and facts. Our model generates realistic quasi-periodic alternations between incumbents and challengers that are typical for two-party systems. Moreover, our model shows that relative to other voters’ strategies, conscious voting can lead to more successful governments of not only fact-oriented but also pragmatic and balanced political parties, irrespective of the strategies of the competing opposition parties. In addition, our simulations uncover several interesting features including less victories for strictly ideological or fact-oriented parties unless they include some aspects of populism or pragmatism. In this sense, our model can also describe situations where election outcomes are not necessarily based on votes for the current programs of competing parties and their placement on relevant issues, but instead result from voters’ dissatisfaction with the previous government and the votes against it.


Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129183116500650
Conference presentations and posters | 2015

The Influence of Wood Pellet Prices on Heat Generation Costs of Alternative Heating Systems

Kristöfel C, Strasser C, Schmid E. The Influence of Wood Pellet Prices on Heat Generation Costs of Alternative Heating Systems, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)

Details
Peer reviewed papers | 2016

The influence of oxygen availability on off-gassing rates of emissions from stored wood pellets

Meier F, Sedlmayer I, Emhofer W, Wopienka E, Schmidl C, Haslinger W, Hofbauer H. The influence of oxygen availability on off-gassing rates of emissions from stored wood pellets. Energy & Fuels. 18 February 2016;30(2): 1006-1012.

External Link Details

The phenomenon of off-gassing from wood pellets during storage has been the cause of several, in some cases fatal, accidents due to toxic atmospheres in storages. To optimize safety measures the nature of the responsible processes needs to be clarified. In this study the impact of O2 availability, which is a decisive factor for the presumed oxidation of fatty acids, is pointed out. Off-gassing rates of CO, CO2, VOC, and CH4 of pellets at relatively constant O2 levels of approximately 35%, 20%, and <1% over a period of 20 d at approximately 295 K were investigated. For this purpose 7 kg of spruce pellets was stored under simulated ventilation of the atmosphere in a 31 L tank. Gas concentrations were determined every 24 h by GC-FID/TCD. Compared to the mean emission rates at 35% O2 of CO (0.22 mg kg–1pelletsd.b. in 24 h) and CO2 (0.76 mg kg–1pelletsd.b. in 24 h) the lowest O2 concentration of <1% resulted in a significant reduction of off-gassing rates of 40% for both gases. In contrast the release rates of VOCs and also CH4 decreased with the higher O2 concentration (0.035 to 0.025 mg kg–1pelletsd.b. in 24 h; 0.0085 to 0.0061 mg kg–1pelletsd.b. in 24 h), presumably, because of increased onward reactions to CO and CO2. Since off-gassing was not prevented by the lack of O2 (<1% O2-trial) it is assumed that the O2 required for the reactions originated from the biomass itself. During the storage of pellets at 20% O2, emission rates of CO (0.18 mg kg–1pelletsd.b. in 24 h) and CO2 (0.79 mg kg–1pelletsd.b. in 24 h) at the start decreased by more than 20% and those for VOCs (0.032 mg kg–1pelletsd.b. in 24 h) by almost 30% after 3 weeks. It can be assumed that in ventilated storages the reactivity and thus a potential risk from off-gases from wood pellets decreases considerably in only a few weeks. The effects of aging, in terms of declining reactivity at relatively constant tank conditions, on off-gassing rates could be clarified for the first time. A realistic development of the decline of reactivity of the material itself could be determined.

Peer reviewed papers | 2020

The impact of project financing in optimizing microgrid design

Pecenak ZK, Mathiesen P, Fahy K, Cannon C, Ayandele E, Kirk TJ, Stadler M. The impact of project financing in optimizing microgrid design. Journal of Renewable and Sustainable Energy. November 2020. 12:026187.

External Link Details

A disconnect between real world financing and technical modeling remains one of the largest barriers to widespread adoption of microgrid technologies. Simultaneously, the optimal design of a microgrid is influenced by financial as well as technical considerations. This paper articulates the interplay between financial and technical assumptions for the optimal design of microgrids and introduces a design approach in which two financing structures drive an efficient design process. This approach is demonstrated on a descriptive test case, using well accepted financial indicators to convey project success. The major outcome of this paper is to provide a framework which can be adopted by the industry to relieve one of the largest hurdles to widespread adoption, while introducing multiple debt financing models to the literature on microgrid design and optimization. An equally important outcome from the test case, we provide several points of intuition on the impact of varying financing terms on the optimal solution.

Other Publications | 2017

The Green Parking Space – Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Schipfer F, Lichtenegger K, Zellinger M et al. The Green Parking Space – Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. Präsentation. First Vienna Vertical Farming Meetup 01.03.2017, Wien.

Download PDF Details
Conference presentations and posters | 2017

The Green Parking Area – Utilization of urban parking areas for cultivation of microalgae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of microalgae. Presentation at the Eco City Summit 2017, Melbourne, Australia, 17. June 2017.

Details
Conference presentations and posters | 2018

The Green Parking Area – Utilization of urban parking areas for cultivation of algae

Zellinger M, Riepl R, Lichtenegger K, Meixner K, Drosg B, Enigl M, Theuretzbacher F, Schipfer F. The Green Parking Area – Utilization of urban parking areas for cultivation of algae. presentation at the WSED, Wels, Austria, 01. March 2018.

Details

The present study examines the possible use of urban and rural traffic areas for producing biomass. Many of those areas (for example, parking lots at cinemas and shopping centers) are only intensively used during certain times. Most of the time those areas remain empty.
At the same time a major problem for large-scale implementation of renewable energy is the massive land use resulting from limited energy density of solar radiation and, in case of biomass production, low efficiency for utilization of solar radiation by plants. Additionally, renewable energies are often criticized for the fact that they require areas, which could also be used for food and feed production.
Therefore, it is an attractive idea to use some of the traffic areas that are lost for the ecosystem anyway for biomass production. This approach is novel that no data have been available yet. The aim of this work was therefore to develop technical solutions, to quantify the technical potential for this type of biomass production and, subsequently, for energy supply, based on data on the area utilization, climatic data and known properties of microalgae.
The work deals with the question of the technical potential for this approach in Austria. This question is
answered by a survey of the area data in Austria, the elaboration of technical systems for a possible implementation, as well as by calculating the biomass potential, based on simulation results. The data have been collected, analyzed and evaluated in a comprehensive literature search. The potential analysis provides an overview of the distribution of traffic areas in Austria and the resulting biomass potential. Thus, a list of possible areas including biomass and energy quantities is available.

Reports | 2018

The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse

Lichtenegger K, Meixner K, Riepl R, Schipfer F, Zellinger M. The Green P - Nutzung von städtischen Verkehrsflächen für die Produktion von Biomasse. BMVIT, Schriftenreihe 25/2018.

External Link Details
Peer reviewed papers | 2020

The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study.

Birkelbach F, Deutsch M, Werner A. The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study. Renewable Energy 2020.152:300-307.

External Link Details

The viability of thermochemical energy storage for a given application is often determined by the reaction kinetics under process conditions. For high exergetic efficiency the process needs to operate in close proximity to the reaction equilibrium. Thus, accurate kinetic models that include the effect of the reaction equilibrium are required.

In the present work, different parametrization methods for the equilibrium term in the General Kinetic Equation are evaluated by modeling the kinetics of two reaction systems relevant for thermochemical energy storage (CaC2O4 and CuO) from experimental data. A non-parametric modeling method based on tensor decompositions is used that allows for a purely data driven assessment of different parametrization methods.

Our analysis shows that including a suitable equilibrium term is crucial. Omitting the equilibrium term when modeling formation reactions can lead to seemingly negative activation energies. Our tests also show that for formation reactions, the reaction rate decreases much faster towards the equilibrium than theory predicts. We present an empirical modeling approach that can predict the reaction rate of gas-solid reactions, regardless of the shortcomings of theory. In this way, non-parametric modeling offers a powerful tool for applied research and may contribute to the advancement of the thermochemical energy storage technology.

Peer reviewed papers | 2022

The effect of the presence of water on sulfur removal capacity during H2S removal from syngas using ZnO adsorbent

Dogan C, Martini S, Rets hitzegger S, Cetin B. The effect of the presence of water on sulfur removal capacity during H2S removal from syngas using ZnO adsorbent. Environmental Technology. 15 May 2022.

External Link Details

Compared to extensive studies on affecting parameters in sulfur removal with ZnO adsorbents from coal gasification syngas, similar studies conducted for biomass gasification syngas (BGS) are quite rare. Thus, considering the BGSs with high water content, this study was performed to investigate the effect of H2O presence in syngas on sulfur removal capacity (SRC) of ZnO adsorbents. Initially, the effect of gas composition and temperature on SRC in binary gas mixture was investigated. While H2O decreased the SRC, as expected, the highest reduction in the capacity occurred in the CO–H2S gas mixture due to observed COS formation. Second, the SRCs and resulting COS formation were compared for synthetic syngas mixtures having different water contents and for different amounts of adsorbents. Finally, the separate and combined effects of temperature and H2O on SRC and COS formation in synthetic syngas were investigated by comparing SRCs of typical syngas under wet and dry conditions. The results showed that increasing the amount of adsorbent and temperature results in higher SRC due to a reduction in COS formation through the reactions of COS with H2 and H2O. This indicates that it is critical to control the residence time of syngas and temperature to reduce COS formation during ZnO adsorption.

Conference presentations and posters | 2020

The Contribution of advanced renewable transport fuels to transport decarbonisation in 2030 and beyond

Bacovsky D, Laurikko J. The Contribution of advanced renewable transport fuels to transport decarbonisation in 2030 and beyond. 28th European Biomass Conference and Exhibition (oral presentation) 2020.

Details

In the light of climate change, there is an urgent need to decarbonize our societies. The transport sector is specifically challenging, as transport demand is still growing, and so are the sector´s GHG emissions. Several countries have set ambitious national targets for GHG reduction in the transport sector. These are often backed with policy measures for implementation of both advanced renewable transport fuels and electrification.
In a project set up jointly by two Technology Collaboration Programmes of the International Energy Agency, namely the IEA Bioenergy TCP and the Advanced Motor Fuels TCP, the contribution that advanced renewable transport fuels should make to the decarbonisation of the transport sector is assessed by means of country-specific assessments.

Other papers | 2014

The Biomass Technology Roadmap of the RHC-Platform: Priorities for high efficient large-scale CHP units

Grammelis P, Goodwin N, Alakangas E, Haslinger W, Karampinis E. The Biomass Technology Roadmap of the RHC-Platform: Priorities for high efficient large-scale CHP units. VGB PowerTech. 2014;6:74-79.

Details

Die europäische Technologie-Plattform für Heizen und Kühlen mit erneuerbaren Energien (RHC-Plattform, www.rhc-platform.org) fördert die Forschung und Entwicklung bei der Wärme- und Kälteproduktion aus erneuerbaren Energiequellen in der EU. Die verschiedenen Endanwendungen (Strom und/oder Bereitstellung von Wärme, Kraftstoff) setzen eine Verdoppelung der Biomassenutzung voraus, um die 20-20-20-Ziele der EU zu erreichen. Neue Ressourcen müssen erschlossen, mobilisiert und der Wirkungsgrad der Umwandlungsprozesse gesteigert werden. In Biomasse-Heizkraftwerken sowie Heizwerken werden derzeit mehr als ein Drittel des gesamten Biomasseaufkommens eingesetzt. Dies führt zu neuen, gemeinsamen Herausforderungen für den Strom- und Wärmesektor.
Das Biomasse-Panel der RHC-Plattform hat Schwerpunkte für Forschung und Entwicklung definiert, um bestimmte Kennzahlen für Biomassewertschöpfungsketten zu erreichen. Der vorliegende Beitrag stellt die Prioritäten für die Bestandteile der Wertschöpfungsketten vor, die relevant für den Strombereich sind:
a) nachhaltige und kosten-effiziente Biomasseversorgungsketten, b) thermisch behandelte Biomasse-Brennstoffe und c) hoch-effiziente KWK-Anlagen.
Herausforderungen für den Anlagenbetrieb sind Brennstoffflexibilität, Wirkungsgraderhöhung über den vollen Lastbereich, Betrieb mit variablen Brennstoffen und Qualitäten bei variablen Lastzuständen, höhere Betriebsparameter für Dampf und andere Wärmeträger, höhere Anlagenverfügbarkeit, Reduktion von unerwünschten gas- und partikelförmigen Emissionen und schließlich die Ascheverwertung.
 

Peer reviewed papers | 2015

The behavior of biomass and char particles in a dual fluidized bed gasification system

Kraft S, Kuba M, Hofbauer H. The behavior of biomass and char particles in a dual fluidized bed gasification system. Powder Technology 2018;338:887-897.

External Link Details
Biomass gasification in fluidized beds is a complex process in which particles occur in a wide range of size and density. In this paper, the mixing behavior of the char, biomass and bed material in a gasification reactor of a typical dual fluidized bed (DFB) system was investigated in a cold flow model. Experiments with ternary mixtures were performed in which the size and the density of the used particles were varied. For the experiments, a cold flow model was constructed with a full bed material recirculation loop, similar to DFB systems. Experiments revealed that at low fluidization velocities, the smaller char particles and biomass particles occur more preferentially in the bed material recirculation stream. If the fluidization velocities are increased, this tendency diminishes. Furthermore, the experiments showed that the mass fraction of biomass particles in the recirculation stream is always higher than that of the lighter char particles. It is also shown that the current design of the gasification reactor in DFB systems is not optimal. A way to overcome this issue in existing plants is presented.
Conference presentations and posters | 2012

The actual need of a guideline for sampling and analysis of chemical matter (not tars) from product gas, pyrolysis gas and synthesis gas

Zeisler J, Kleinhappl M, Martini S, Neubauer Y. The actual need of a guideline for sampling and analysis of chemical matter (not tars) from product gas, pyrolysis gas and synthesis gas, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 919-925.

Details

Due to the increasing number of different online and offline methods and procedures for sampling at gasification and pyrolysis plants a comparison of the measured values is difficult. About the sampling of tars already a number of detailed guidelines and a common approach are established [2]. In terms of discrete chemical impurities the missing of a guideline for sampling at biomass¬ plants is an obstacle for implementing sampling systems in new plants or experimental assemblies. Nevertheless the knowledge is available at several institutions but it has to be collected. Within this paper the basic challenges of sampling are mentioned, the system at Bioenergy2020+ is explained in detail and about the parameters NH3, H2S & HCN useful results of optimisation are reported. This status should help to point out the need of a reliable library of methods. According the first systematisation of offline and online sampling respectively detection a table of application is proposed. The detailed knowledge for this will be treated and exchanged within an established working group which should lead to a guideline (at least methods library) for sampling of trace components as described.

Reports | 2020

Test Report - Lean Gas Test: Operation of a Stirling engine with sewage gas

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Operation of a Stirling engine with sewage gas. Projektbericht. February 2020

External Link Details
Reports | 2020

Test Report - Lean Gas Test: Operation of a Stirling engine with landfill gas

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Operation of a Stirling engine with landfill gas. Projektbericht. February 2020

External Link Details
Reports | 2020

Test Report - Lean Gas Test: Operation of a Stirling engine with biogas

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Operation of a Stirling engine with biogas. Projektbericht. February 2020.

External Link Details
Reports | 2020

Test Report - Lean Gas Test Simulated lean gas in the laboratory

Stressler H, Aigenbauer S. Test Report - Lean Gas Test: Simulated lean gas in the laboratory. Projektbericht. February 2020.

External Link Details
Reports | 2016

Technology Overview

Strasser C. Technology Overview. New York State Wood Heat Report: An Energy, Environmental, and Market Assessment - Final Report. April 2016. Chapter 8; 141-206.

Details
Conference presentations and posters | 2019

Technology mapping of market-available small-scale combustion appliances

Feldmeier S, Wopienka E, Schwarz M, Pfeifer C. Technology mapping of market-available small-scale combustion appliances. 27th European Biomass Conference & Exhibition (Poster). 2019.

External Link Details

A broad range of different biomass combustion appliances dedicated to domestic heating is available on the market. Depending on the technology the impact of varying properties of biomass fuels on slag formation and emission release may vary. Aspects as the design of the grate section and the selection of individual boiler components as well as operational settings determine the applicability of biomass fuels. Apart from fuel properties also the fuel load on the grate, residence time, air distribution and geometry of grate and combustion chamber affect the degree of slag formation and emission release. Technology indexes determined by means of constructional measures enable a systematic comparison and – in a further step – an assessment of combustion appliances. In this work specific technology indexes were specified and applied to compare technological aspects, which will prospectively allow investigating the technological influence on the combustion performance.

Other papers | 2022

Technology and Process Improvement of a Demonstration Unit for a Novel Aqueous Phase Reforming Process Via Virtual Commissioning

Nigitz T, Arlt S, Poms U, Weber G, Luisser M, Gölles M. Technology and Process Improvement of a Demonstration Unit for a Novel Aqueous Phase Reforming Process Via Virtual Commissioning. Proceedings of the 30th European Biomass Conference and Exhibition. 2022. 948 - 950.

External Link Details

A process demonstration unit for a novel aqueous phase reforming (APR) process was built and scaled up by factor 666. The set-up of this demonstration unit was supported by virtual commissioning using a virtual test bed. By using virtual commissioning, it was possible to speed-up the commissioning and to support stable, reliable and continuous plant operation for 100h.

Reports | 2019

Technological expertise for biomass-based heat, power and transport fuels

Bacovsky D. Technological expertise for biomass-based heat, power and transport fuels. Bioenergy in Austria. October 2019.

External Link Details
Peer reviewed papers | 2014

Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers

Hebenstreit B, Schnetzinger R, Ohnmacht R, Höftberger E, Lundgren J, Haslinger W, et al. Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers. Biomass Bioenergy. 2014;71:12-22.

External Link Details

An active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10kW and 100kW) and two wood chip boilers (100kW and 10MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3-21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3-27.9kg MWh-1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2-12 years for the 10MW wood chip test case. © 2014 Elsevier Ltd.

Peer reviewed papers | 2021

Techno-economic optimization of islanded microgrids considering intra-hour variability

Mathiesen P, Stadler M, Kleissl J, Pecenak Z. Techno-economic optimization of islanded microgrids considering intra-hour variability. Applied Energy. 2021.304:117777.

External Link Details

The intra-hour intermittency of solar energy and demand introduce significant design challenges for microgrids. To avoid costly energy shortfalls and mitigate outage probability, islanded microgrids must be designed with sufficient distributed energy resources (DER) to meet demand and fulfill the energy and power balance. To avoid excessive runtime, current design tools typically only utilize hourly data. As such, the variable nature of solar and demand is often overlooked. Thus, DER designed based on hourly data may result in significant energy shortfalls when deployed in real-world conditions. This research introduces a new, fast method for optimizing DER investments and performing dispatch planning to consider intra-hour variability. A novel set of constraints which operate on intra-hour data are implemented in a mixed-integer-linear-program microgrid investment optimization. Variability is represented by the single worst-case intra-hour fluctuation. This allows for fast optimization times compared to other approaches tested. Applied to a residential microgrid case study with 5-minute intra-hour resolution, this new method is shown to maintain optimality within 2% and reduce runtime by 98.2% compared to full-scale-optimizations which consider every time-step explicitly. Applicable to a variety of technologies and demand types, this method provides a general framework for incorporating intra-hour variability into microgrid design.

Conference presentations and posters | 2020

Techno-economic modelling of bioeconomy value chains

Fuhrmann Marilene

Dißauer C, Fuhrmann M, Strasser C, Enigl M, Matschegg D. Techno-economic modelling of bioeconomy value chains. 6th Central European Biomass Conference. 2020. Graz.

Download PDF Details

In the context of Austria´s and the EU´s ambitious goals to combat climate change by reducing the demand for fossil fuels in all sectors, many industries plan to increase the share of renewable energy in their production processes. Furthermore greenhouse gases shall be reduced by 36 % until 2030 (compared to 2005), which means another 14 Mio. tons CO2eq will have to be reduced per year in comparison to data from 2016. In doing so, some industries find it sufficient to use green electricity or green gas from the grid, but for some industries the use of biomass is particularly interesting. In particular, the wood-based economy as an essential part of the Austrian bio-based economy is needed to promote the development of sustainable production and sustainable energy generation. Besides the increasing demand for woody biomass, the supply side will also undergo substantial changes since increasing calamities (such as bark beetle infestation and windthrow) caused by climate change will affect the wood supply to a varying extend. Hence, within the project “BioEcon” the BIOENERGY 2020+ team together with industry partners analyses the effects of these developments on the wood-based economy and the corresponding supply chains in terms of economic and technological perspectives including econometric models to evaluate woody biomass supply and demand.
 

Other Publications | 2022

Techno-economic assessment of wood-based processes with feedstock price scenarios in Austria

Fuhrmann M, Dißauer Ch, Strasser Ch, Schmid E. Techno-economic assessment of wood-based processes with feedstock price scenarios in Austria. Austrian Journal of Agricultural Economics and Rural Studies.31.15

Download PDF Details

Woody biomass is a raw material and cost factor for a range of industries in Austria. The aim of this article is to assess impacts of price developments on operating costs of particleboard, combined heat and power (CHP) and synthetic natural gas (BioSNG) production. Three price scenarios have been developed for pulpwood, industrial wood chips and forest wood chips for the period 2021 - 2026. Results show that the share of raw material costs on total operating costs ranges between 24 - 64% for particleboard, 45 - 82% for CHP, and 24 - 63% for BioSNG production.

Peer reviewed papers | 2017

Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes

Yao J, Kraussler M, Benedikt F, Hofbauer H. Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes. Energy Conversion and Management. 1 August 2017;145: 278-292.

External Link Details
Books / Bookchapters | 2020

Technische Optionen für die Umrüstung und Nachrüstung von Industrien mit Bioenergie

Rutz D, Janssen R, Reumerman P, Spekreijse J, Matschegg D, Bacovsky D, et al. Technische Optionen für die Umrüstung und Nachrüstung von Industrien mit Bioenergie. WIP Renewable Energies.2020

External Link Details
Peer reviewed papers | 2024

Tar conversion and recombination in steam gasification of biogenic residues: The influence of a countercurrent flow column in pilot- and demonstration-scale

Huber M, Benedikt F, Karel T, Binder M, Hochstöger D, Egger A, Fürsatz K, Kuba M. Tar conversion and recombination in steam gasification of biogenic residues: The influence of a countercurrent flow column in pilot- and demonstration-scale. Fuel. 15 May 2024. 364:131068

External Link Details

First experiments with biogenic residues and a plastic-rich rejects and woody biomass blend were conducted in an advanced 1 MW dual fluidized bed steam gasification demonstration plant at the Syngas Platform Vienna. Wood chips, bark, forest residues, and the plastic-rich rejects and woody biomass blend were tested and the tar composition was analyzed upstream and downstream of the upper gasification reactor, which is designed as a high-temperature column with countercurrent flow of catalytic material. Each feedstock was gasified with olivine as bed material in demonstration scale and is compared to the gasification of softwood pellets with olivine and limestone in pilot scale. A reduction in tar content was observed after countercurrent column for all feedstocks. However, a shift in tar species occurred. While styrene, phenol, and 1H-indene were predominant upstream, naphthalene and polycyclic aromatic hydrocarbons (PAHs) were the prevailing tar species downstream the countercurrent column. Hence, an increase of i.e. anthracene, fluoranthene, and pyrene from the upstream concentration was observed. For pyrene, up to twice the initial concentration was measured. This recombination to PAHs was observed for all feedstocks in demonstration- and pilot-scale. The only exception occurred with limestone as bed material, characterized by a higher catalytic activity in comparison to the typically used olivine. In the perspective of the integrated product gas cleaning, tar with higher temperature of condensation are separated more efficiently in the installed scrubbing unit. Hence, the recombination facilitates an overall decline of tar content after the gas cleaning.

Other papers | 2009

Tar content and composition in producer gas of fluidized bed gasification of wood - influence of temperature and pressure

Wolfesberger U, Aigner I, Hofbauer H. Tar content and composition in producer gas of fluidized bed gasification of wood-influence of temperature and pressure. Environmental Progress and Sustainable Energy. 2009;28(3):372-9.

External Link Details
Conference presentations and posters | 2009

Tar Content and Composition in Producer Gas of Fluidized Bed Gasification and Low Temperature Pyrolysis of Straw and Wood – Influence of Temperature

Aigner I, Wolfesberger U, Hofbauer H. Tar Content and Composition in Producer Gas of Fluidized Bed Gasification and Low Temperature Pyrolysis of Straw and Wood – Influence of Temperature, ICPS 2009, 1st-3rd of September 2009, Vienna, Austria.

Details

The global warming, the increasing CO2 emission, the combustion of and dependency on fossil
fuels, as well as the high-energy price have resulted in an increasing demand in renewable energy
sources. Biomass, as a renewable energy source, has the potential to contribute to the future energy
mix in various ways. In thermo-chemical biomass conversion processes, especially gasification and pyrolysis, the tar content and its composition is a major subject. Due to the various processes examined at VUT, this
work picks up the opportunity to compare the different tar amounts and compositions at different
temperatures and process parameters. The tar content and composition in the producer gas of steam
gasification of straw and wood as well as the tar yields of low temperature pyrolysis of straw are
displayed in the following work. Gasification experiments were carried out in a 100 kW dual fluidized bed steam gasifier at a temperature range of 700° C to 870° C. Pyrolysis experiments were conducted in a rotary kiln
reactor at temperatures between 600° C and 630° C. For better understanding of tar formation during thermo-chemical conversion of biomass the tar content and composition in the producer gas was analyzed with a gas chromatograph coupled with a mass spectrometer. Main observation was that at higher temperatures the tar composition is shifted to higher molecular tars as poly aromatic hydrocarbons (PAH). Key tar components at lower temperatures (pyrolysis) are phenols. These results give the opportunity to analyse tar formation in different thermochemical conversion steps, therefore, for the future a better understanding of tar formation in large scale facility’s should be gained. This means lower tar content in the producer gas for gasification processes and an achievement of required pyrolysis oil yields for pyrolysis.

Conference presentations and posters | 2010

Tapping the energy contained in waste for renewable energy provision - example of Austria

Ragossnig A. Tapping the energy contained in waste for renewable energy provision - example of Austria, International Work-Shop ENERGY & FUELS FROM WASTE & BIOMASS 2010, 5th of January 2010, Pucon, Chile.

Details
Reports | 2021

Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications

Maziarka P, Sommersacher P, Wang X, Kienzl N, Retschitzegger S, Prins W, Hedin N, Ronsse F. Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications. Applied Energy.2021.286:116431. https://doi.org/10.1016/j.apenergy.2020.116431

External Link Details

Char obtained from biomass pyrolysis is an eco-friendly porous carbon, which has potential use as a material for electrodes in supercapacitors. For that application, a high microporous specific surface area (SSA) is desired, as it relates to the accessible surface for an applied electrolyte. Currently, the incomplete understanding of the relation between porosity development and production parameters hinders the production of tailor-made, bio-based pyrochars for use as electrodes. Additionally, there is a problem with the low reliability in assessing textual properties for bio-based pyrochars by gas adsorption. To address the aforementioned problems, beech wood cylinders of two different lengths, with and without pre-treatment with citric acid were pyrolysed at temperatures of 300–900 °C and analysed by gas adsorption. The pyrolyzed chars were characterised with adsorption with N2 and CO2 to assess the influence of production parameters on the textual properties. The new approach in processing the gas adsorption data used in this study demonstrated the required consistency in assessing the micro- and mesoporosity. The SSA of the chars rose monotonically in the investigated range of pyrolysis temperatures. The pre-treatment with citric acid led to an enhanced SSA, and the length of the cylinders correlated with a reduced SSA. With pyrolysis at 900 °C, the micro-SSAs of samples with 10 mm increased by on average 717 ± 32 m2/g. The trends among the investigated parameters and the textual properties were rationalized and provide a sound basis for further studies of tailor-made bio-based pyrochars as electrode materials in supercapacitors.

Peer reviewed papers | 2018

Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China

Fuchs W, Wang X, Gabauer W, Ortner M, Li Z. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China (Review). Renewable and Sustainable Energy Reviews 2018;97:186-199.

External Link Details

The increased global consumption of chicken products has resulted in the generation of huge amounts of manure. Numerous studies emphasized the large potential of this waste as an untapped source of renewable energy through anaerobic digestion (AD). However, intrinsic difficulties, in particular the high N content, induce instable process conditions, including the accumulation of intermediates, and foaming, which reduces methane yields. Such issues limit the widespread application of this energy-rich substrate for biogas production. The process inhibition by ammonia is usually prevented by reducing the concentration of chicken manure through dilution or by operating the plant considerably below its theoretical reactor capacity. However, this process compromises process efficiency, thereby increasing capital investments and operational costs. Another option to achieve optimal process performance is co-digestion with less N-rich materials. However, co-digestion also has its limitations due to the frequent unavailability of sufficient amounts of C-rich substrates. A series of promising technical solutions have been developed to overcome the aforementioned bottlenecks. Examples include stripping or membrane extraction as means to reduce ammonia concentration in the fermenter. Several full-scale plants employing ammonia removal techniques have been installed recently. Latest research also investigated the use of additives, such as zeolites and trace elements, as well as bioaugmentation, to mitigate ammonia inhibition. The current study reviews the state of technology as well as recent achievements and perspectives. It provides an overview of the different approaches to remove ammonia from AD-process and presents practical examples from China and Europe.

Conference presentations and posters | 2012

System performance of a storage integrated pellet boiler

Aigenbauer S, Hartl M, Malenkovic I, Simetzberger A, Vverma VK, Schmidl C. System performance of a storage integrated pellet boiler, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1320-1324.

Details

A pellet burner directly integrated into the solar storage provides heat and domestic hot water for small
residential applications in an environment-friendly way. The objective of this work was to evaluate the system
performance of a storage integrated pellet boiler in laboratory under transient test conditions. Furthermore, the type
test results according to ÖNORM EN 303-5 [1] of the last decade were compared with monitoring data of systems
with separated boiler and heat storage. The laboratory tests allowed finding relevant parameters and losses, which
influence the system performance. A developed computer simulation model shows the potential to optimize the
performance of the investigated boiler.

Peer reviewed papers | 2023

Synthetic oxygen carrier C28 compared to natural ores for chemical looping combustion with solid fuels in 80 kWth pilot plant experiments

Fleiss B, Priscak J, Fuchs J, Müller S, Hofbauer H. Synthetic oxygen carrier C28 compared to natural ores for chemical looping combustion with solid fuels in 80 kWth pilot plant experiments. Fuel. 15 February 2023. 334.

External Link Details

Chemical Looping Combustion (CLC) is a highly efficient CO2 separation technology with no direct contact between combustion air and fuel. A metal oxide is used as oxygen carrier (OC) in a dual fluidized bed to generate clean CO2. The use of solid fuels, especially biomass, is the focus of current research, because of the possibility of “negative” CO2-emissions. The OC is a key component, because it must meet special requirements for solid fuels, which are different to gaseous fuels. Most frequently naturals ores or synthetic materials are used as OC. Synthetic OC are characterised by higher reactivity at the expense of higher costs. For this reason, so far not so many experiments have been conducted on a larger scale with synthetic OC on solid CLC. This work deals with the synthetic perovskite C28 and investigating the suitability as oxygen carrier in an 80 kWth pilot plant for chemical looping combustion with biogenic fuels. The experiments show a significantly increased combustion efficiency of 99.6 % compared to natural ores and a major influence of the solid circulation rate on general performance, whereby carbon capture rates up to 98.3 % were reached. Furthermore, the role of the fuel reactor's counter-current flow column and its impact on better gas conversion was investigated. C28 suffered no deactivation or degradation over the experimental time, but first traces of ash layer formation, phase shifting and attrition of fines could be detected. The focus of further research should lie on long-term stability and reactivity for their high impact on the economic scale up of C28.

Conference presentations and posters | 2013

Synthetic biofuels – do they have a future?

Rauch R. Synthetic biofuels – do they have a future? 8th A3PS Conference Eco-Mobility 2013, 4th of October 2013, Vienna, Austria.

Details
Conference presentations and posters | 2014

Synergies of Wastewater and Microalgae Cultivation

Sonnleitner A, Bacovsky D, Bochmann G, Drosg B, Schagerl M. Synergies of Wastewater and Microalgae Cultivation, Word Sustainable Energy Days next 2014, 26th-28th of February 2014, Wels, Austria.

Details

Current international research results identify microalgae as a new and promising feedstock for the global energy supply chain. A novel concept to reduce costs and cover the need of water and nutrients is the combination of wastewater treatment and microalgae cultivation. In Austria in particular brewery and dairy effluents as well as municipal wastewater would be suitable for algae cultivation. Cultivation systems practical for the use of wastewater are High Rate Algal Ponds (open system, suspended culture), Algal Turf Scrubbers (open system, immobilized culture) and Photobioreactors (closed systems, suspended culture). The cultivation of microalgae in general and the special case of wastewater as nutrient source face a variety of challenges either concerning the accumulation of microalgal cells in wastewater (upstream process) or their removal and processing (downstream process). Taking a look at the whole production chain shows that for effluents of breweries, dairies
and smale-scale municipal wastewater no feasible concept for the combination of microalgae cultivation and wastewater treatment can be designed. A promising production concept for large-scale municipal wastewater treatment plants are HRAPs or biofilm production in ATS systems for energetic and material pathways. Various R&D challenges are to overcome to lead to an optimization and further development of technologies for combined wastewater treatment and microalgae cultivation in Austria.

PhD Thesis | 2019

Synchronization of product gas generation and its utilization in industrial dual fluidized bed gasification plants

Nigitz T, Gölles M, Aichernig C, Hofbauer H, Horn, M. Synchronization of the gas production and utilization rates of a solid-to-gas process and a downstream gas-to-X process. 21. Styrian Workshop on Automatic Control. 10 September 2019. Leitring/Wagna, Austria. (oral presentation)

Details

Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite