Publikationen

Conference presentations and posters | 2012

Biomass steam gasification - A platform for synthesis gas applications

Rauch R. Biomass steam gasification - A platform for synthesis gas applications, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2012

Biomasse befeuerte automatische Öfen mittels Thermoelektrik

Höftberger E. Biomasse befeuerte automatische Öfen mittels Thermoelektrik, RENEXPO 2012, 29th of November-1st of December 2012, Salzburg, Austria.

Details
Conference presentations and posters | 2012

Biomasse F&E Roadmap „Erneuerbares Heizen und Kühlen“

Haslinger W, Höftberger E, Schmidl C, Strasser C, Wörgetter M, Kranzl L. Biomasse F&E Roadmap „Erneuerbares Heizen und Kühlen“, Highlights der Energieforschung. Erneuerbares Heizen und Kühlen 2012, 19th of April 2012, Vienna, Austria.

Details
Conference presentations and posters | 2012

BioMaxEff – Cost efficient biomass boiler systems with maximum annual efficiency and lowest emissions

Haslinger W, et al. BioMaxEff – Cost efficient biomass boiler systems with maximum annual efficiency and lowest emissions, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy.

Details
Conference presentations and posters | 2012

Carbon Footprint of Sorting for a Middle-Caloric Fraction After Mechanical-Biological Treatment

Rixrath D, Piringer G, Ragoßnig AM, Meirhofer M. Carbon Footprint of Sorting for a Middle-Caloric Fraction After Mechanical-Biological Treatment, ISWA Annual Congress Florence 2012, 17th-19th of September 2012, Florence, Italy. (peer reviewed)

Details

Management of municipal and commercial waste in Austria frequently involves mechanical-biological treatment (MBT) followed by incineration. A middle-caloric MBT output stream (lower heating value (LHV) = 9.90 MJ/kg WW, particle size = 20-80 mm) with a high proportion of inert material like stones, bricks, and metals (40.5 %m) is currently incinerated. Under favorable market conditions, it could be economically advantageous to split off a low-caloric heavy fraction (HF) that can be landfilled and to incinerate only the remaining, lighter fraction (LF) with a higher heating value. This study analyzes the specific global-warming potential (100-year GWP per tonne of input waste) of such an additional separation step and of the subsequent treatment processes. Four treatment alternatives were considered: a reference scenario without separation and three separation scenarios – a near-infrared (NIR) sensor-based scenario, an X-ray-transmission (XRT) sensor-based scenario, and a mechanical separation scenario using a diagonal sifter (DS). To calculate the specific GWP, the analysis applied techniques from life-cycle assessment (LCA). Primary data were obtained from pilot-scale and full-scale separation experiments, and from equipment manufacturers. Commercial databases provided secondary data. The results consist of separate LCA models for each scenario, including credits for fossil fuels replaced by LF incineration and HF landfill gas utilization. When only direct separation-related emissions are considered, the DS separation has by far the lowest specific GWP, followed by NIR-based separation, and by XRT-based separation. Overall specific GWP is strongly influenced by the choice of separation technology. It is lowest for the XRT scenario, followed closely by the reference scenario, while the DS and NIR scenarios show considerably higher results. Results are dominated by the net emissions from LF incineration. While incineration emissions are largely compensated by credits from replaced fossil fuels, credits for landfill gas utilization are much smaller than direct landfilling emissions. The ranking of the separation scenarios is largely determined by three waste stream characteristics: the ratio of biogenic to fossil carbon content and the LHV in the LF, and the degradable biogenic carbon content in the HF. Changes in important modeling assumptions leave the ranking between scenarios unchanged. It can be concluded that – given the right choice of
separation technology – a small positive effect of sorting on the overall specific GWP is feasible. This
work demonstrates that global warming effects of waste treatment decisions can be estimated and
considered early in the planning stage of treatment system design.

Conference presentations and posters | 2012

Carbon Footprint of Sorting for a Middle-Caloric Fraction After Mechanical-Biological Treatment

Rixrath D, Piringer G, Ragoßnig AM, Meirhofer M. Carbon Footprint of Sorting for a Middle-Caloric Fraction After Mechanical-Biological Treatment, ISWA Annual Congress Florence 2012, 18th of September 2012, Florence, Italy.

Details
Other papers | 2012

Characterisation of Jatropha curcas seeds and oil from Mali

Rathbauer J, Sonnleitner A, Pirot R, Zeller R, Bacovsky D. Characterisation of Jatropha curcas seeds and oil from Mali. Biomass Bioenergy. 2012;47:201-10.

External Link Details

This publication deals with the characterisation of Jatropha curcas seeds and the oil obtained hereof. The analyzed seeds have been harvested from hedges and plantations in the regions of Teriya Bugu and Bla in Mali in the years 2009 and 2010. The oil is obtained through solvent extraction. Parameters analyzed are those which are relevant for processing of the oil into fatty acid methyl ester (FAME, biodiesel), and include acid value, fatty acid profile and contents of S, P, K, Na, Ca and Mg. All oil samples are suitable for processing into biodiesel, but some of them require pre-treatment because of high contents of free fatty acids and phosphorous. The margin of deviation of acid value and element contents throughout the oil samples depends on the way of cultivation, harvest and storage of the Jatropha curcas plants and seeds. Despite high acid values, all oil samples show high oxidation stability. © 2012 Elsevier Ltd.

Peer reviewed papers | 2012

CHP-Plant Güssing, Austria

Rauch R. CHP-Plant Güssing, Austria. Handbook biomass gasification - Second Edition. ISBN 9789081938501 2012:32-36.

Details
Conference presentations and posters | 2012

CO aus Holzpellets. Bildung, Charakterisierung und Maßnahmen

Emhofer W, Aigenbauer S. CO aus Holzpellets. Bildung, Charakterisierung und Maßnahmen, 12. Holzenergiesymposium 2012, 14th of September 2012, Zürich, Schweiz. p 147-158 (peer reviewed)

Details
Conference presentations and posters | 2012

CO off‐gassing from pellets: Impact of raw material choice and storage conditions – Implications for pellets standardization

Emhofer W. CO off‐gassing from pellets: Impact of raw material choice and storage conditions – Implications for pellets standardization, World Bioenergy 2012, 29th-31st of May 2012 Jönköping, Sweden.

Details
Conference presentations and posters | 2012

CO2-Grenzvermeidungskosten alternativer Brennstoffe in der Zementindustrie

Ragoßnig AM, Plank R, Ehrenberg C. CO2-Grenzvermeidungskosten alternativer Brennstoffe in der Zementindustrie, DepoTech 2012, 6th-9th of October 2012, Leoben, Austria. p 283-288.

Details

Der vorliegende Beitrag analysiert die Auswirkungen unterschiedlicher Brennstoffversorgungsszenarios im Calcinator des Zementherstellungsprozesses auf die emittierten CO2-Emissionen. In weiterer Folge werden die Grenzvermeidungskosten für CO2 im Vergleich zum Referenzszenario (100 % PetCoke) berechnet und dargestellt. Als alternative Brennstoffe werden auf Basis von Betriebserfahrungen sowie großtechnischer Versuche die alternativen Brennstoffe hochkalorischer Fluff (Standardszenario) sowie Schilf (Szenario A) und biogen angereicherter Ersatzbrennstoff (Szenario B) und vergleichend dazu in einer Literaturbasierten Analyse getrockneter Klärschlamm (Szenario C) betrachtet. Um die Auswirkung sich ändernder Marktbedingungen auf die Grenzvermeidungskosten abzubilden erfolgt eine Sensitivitätsanalyse hinsichtlich der Brennstoffgestehungskosten für die alternativen Brennstoffe sowie drei unterschiedliche Preisniveaus für Emissionsrechte und Brennstoffgestehungskosten des Referenzbrennstoffes PetCoke.

Peer reviewed papers | 2012

Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor

Lauterböck B, Ortner M, Haider R, Fuchs W. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res. 2012;46(15):4861-9.

External Link Details

The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH3-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH4+) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH4+-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH3-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH4+-N or 1-1.2 g/L NH3-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. © 2012 Elsevier Ltd.

Conference presentations and posters | 2012

Development of an empirical model to describe the local high temperature corrosion risk of 13CrMo4-5 steel in biomass CHP plants regarding the fuel wood chips

Gruber T, Schulze K, Scharler R, Oberberger I. Development of an empirical model to describe the local high temperature corrosion risk of 13CrMo4-5 steel in biomass CHP plants regarding the fuel wood chips, Conference Impacts of Fuel Quality on Power Production and Environment 2012, 23th-27th of September 2012, Puchberg, Austria.

Details
Other Publications | 2012

Development of the 1MW Bio-SNG plant, evaluation on technological and economical aspects and upscaling considerations

Rehling, B. Development of the 1MW Bio-SNG plant, evaluation on technological and economical aspects and upscaling considerations, Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2012.

Details
Conference presentations and posters | 2012

Direct Heating with Logwood ‐ State of the Art, Opportunities and Challenges

Schmidl C, Haslinger W. Direct Heating with Logwood ‐ State of the Art, Opportunities and Challenges, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy.

Details
Other Publications | 2012

Domestic Heating with Biomass – State‐of‐the‐Art and Strategic Research Needs

Haslinger W. Domestic Heating with Biomass – State‐of‐the‐Art and Strategic Research Needs, Annual Conference Renewable Heating and Cooling 2012, 26th-27th of April 2012, Copenhagen, Denmark.

Details
Conference presentations and posters | 2012

Dynamic modeling of biomass pellet boilers

Schnetzinger R, Hebenstreit B, Schwarz M, Höftberger E. Dynamic modeling of biomass pellet boilers, World Bioenergy, 29th-31st of May 2012, Jönköping, Sweden.

Details
Conference presentations and posters | 2012

Economic boundary conditions for the successful operation of active condensation systems

Hebenstreit B, Höftberger E. Economic boundary conditions for the successful operation of active condensation systems, World Bioenergy 2012, 29th-31st of May 2012, Jönköping, Sweden.

Details

In this study the economic boundary conditions for successful active condensation systems are evaluated.
The concept of active condensation utilizes the flue gas enthalpy exiting the boiler by combining a quench for flue gas condensation and a heat pump. Through the heat pump the flue gas can be cooled down below the dew point of the water vapor. Therefore, the sensible heat as well as the latent heat of water can be recovered. This study evaluates the economic viability  for  different  test  cases.  On  the  one  hand  pellet  boilers  of  small  (10kW)  and  medium  (100kW)  size  are considered. On the other hand wood chip boilers of medium (100kW) and big (10MW) size are studied. The economic analysis shows a decrease in operating costs between 2% and 13%. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2-10 years for the large scale system and approx. 10-35 years for the medium sized ones.

Peer reviewed papers | 2012

Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling.

Mehrabian R, Scharler R, Obernberger I. Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling. Fuel. 2012;93:567-75.

External Link Details

A one-dimensional single particle model is utilised to investigate the effects of radiation temperature, moisture content, particle size and biomass physical properties on the heating rate in biomass particles during pyrolysis. The model divides the particle into four layers - drying, pyrolysis, char and ash layer - corresponding to the four main stages of biomass thermal conversion. The average of the time derivative of the pyrolysis layer centre temperature weighted by the pyrolysis rate is introduced as an appropriate indicator for the heating rate in the particle during pyrolysis. The influencing parameters on the heating rate are summarised in the Biot number and the thermal time constant, to make the investigation of their effects easier. The heating rate is inversely proportional to the thermal time constant. The effect of a variation of the Biot number on the heating rate is negligible in comparison to the thermal time constant. Therefore, the thermal time constant can be sufficiently used to specify the heating rate regimes during pyrolysis. It is found that for thermal time constants of more than 50 s, pyrolysis takes place in a low heating rate regime, i.e. less than 50 K/min. Additionally, the heating rate during pyrolysis of various biomass types under a wide range of thermal conversion conditions has been examined, in order to classify the heating rate regime of pyrolysis in state-of-the-are combustion/gasification plants. The pyrolysis of wood dust and wood pellets is found to happen always in high heating rate regimes. Therefore, the kinetic parameters obtained by conventional TGA systems (typically with heating rates lower than 50 K/min) are not applicable for them. On the contrary, the pyrolysis of wood logs always happens in low heating rate regimes, which indicates that kinetic parameters obtained by conventional TGA systems can be applied. However, pyrolysis of wood chips can undergo low or high heating rate regimes depending on their particle size. Concerning the moisture content, it can be stated that it does not strongly influence the heating rate regime of certain biomass particles. © 2011 Elsevier Ltd. All rights reserved.

Other Publications | 2012

Einfluss von Holzart und Rohstoff auf die Entstehung von Emissionen von Holzpellets während der Lagerung

Schmutzer-Rosender, I. Einfluss von Holzart und Rohstoff auf die Entstehung von Emissionen von Holzpellets während der Lagerung, Master Thesis, Universität für Bodenkultur Wien, Vienna, Austria, 2012.

Details

Als feste biogene Brennstoffe gewinnen Pellets durch ihre hohe Energiedichte, ihre gleichbleibende Qualität und die wachsende Nachfrage immer mehr an Bedeutung. Bei der Lagerung von Holzpellets werden Emissionen frei, welche aus Abbaureaktionen von Holzbestandteilen entstehen. Es gibt bereits einige Publikationen, welche das Auftreten und die Zusammensetzung dieser Emissionen in Pelletslagern beschreiben. Es fehlen jedoch noch jegliche Nachweise zur Klärung der ursächlichen Reaktionen, weshalb die Untersuchung der Emissionen aus Pellets und deren Rohstoffen erforderlich ist.
Im Zuge dieser Arbeit werden daher zunächst die Freisetzungsraten von Kohlenmonoxid (CO) und flüchtigen organischen Verbindungen (VOC) verschiedener Holzrohstoffe und Pellets in Lagerungsversuchen untersucht. Des Weiteren erfolgt die Bestimmung des organischen Extraktstoffgehaltes dieser Holzproben mittels Soxhletextraktion. Anschließend werden diese Charakteristika einander gegenübergestellt, um mögliche Zusammenhänge zu identifizieren. Bei den untersuchten Holzarten handelt es sich um die Gemeine Fichte (Picea abies), die Europäische Lärche (Larix decidua) sowie um die Weihrauchkiefer (Pinus taeda). Von diesen drei Holzarten werden verschiedene Späne und Pellets miteinander verglichen. Zudem werden unterschiedliche am österreichischen Markt erhältliche Pellets untersucht. Die höchste Freisetzung von CO wird bei frischen Kieferpellets mit 2,88 mg CO/kg Brennstoff (BS) absolute Trockenmasse (atro)/d gemessen. Die geringste Menge an CO wird von einer handelsüblichen Pelletsprobe mit 0,02 mg CO/kg BS atro/d emittiert. Allen untersuchten Holzproben ist gemein, dass in den Lagerungsversuchen höhere Mengen an CO als an VOC freigesetzt werden. Der organische Extraktstoffgehalt der Kieferproben ist am höchsten. Der geringste organische Extraktstoffgehalt tritt bei den Fichtenhobelspänen auf. Bei allen Proben wird festgestellt, dass der organische Extraktstoffgehalt mit der Pelletierung abnimmt. Zudem wird bestimmt, dass sich mit zunehmender Trocknungstemperatur der organische Extraktstoffgehalt verringert. Ein eindeutiger Zusammenhang zwischen Extraktstoffgehalt und freigesetzten Emissionsmengen kann nicht hergestellt werden.

Peer reviewed papers | 2012

Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen über typische Tageslastverläufe

Kelz J, Brunner T, Obernberger I. Emission factors and chemical characterisation of fi ne particulate emissions from modern and old residential biomass heating systems determined for typical load cycles. Environmental Sciences Europe. 2012;24(3).

External Link Details
Other papers | 2012

Experimental and numerical investigations on a combined biomass-solar thermal system

Hartl M, Aigenbauer S, Helminger F, Simetzberger A, Malenkovic I. Experimental and numerical investigations on a combined biomass-solar thermal system. Energy Procedia. 2012;30:623-632. (peer reviewed)

Details
Other Publications | 2012

Experimental investigations and design of a new apparatus for measurement of emissions from stored pellets

Trinkel, V. Experimental investigations and design of a new apparatus for measurement of emissions from stored pellets, Master Thesis, Vienna University of Technology, Vienna, Austria, 2012.

Details
Other Publications | 2012

Experimentelle Entwicklung eines Pellet-Raumheizgerätes

Raab, A. Experimentelle Entwicklung eines Pellet-Raumheizgerätes, Bachelor Thesis, FH Oberösterreich, Wels, Österreich, 2012.

Details
Other Publications | 2012

Experimentelle Untersuchungen an einem Gasflammenreaktor zur Charakterisierung der Gasphasenverbrennung in Biomasserostfeuerungen

Kamnig, H. Experimentelle Untersuchungen an einem Gasflammenreaktor zur Charakterisierung der Gasphasenverbrennung in Biomasserostfeuerungen, Master Thesis, Technische Universität Graz, Graz, Austria, 2012.

Details

 Ziel der Diplomarbeit war die Bereitstellung von Messdaten für die Entwicklung eines Gasphasenverbrennungsmodells, welches den niedrig-turbulenten Strömungsbereich und den Einfluss der Strähnenbildung auf den Mischungsfortschritt von partiell vorgemischten Flammen über dem Brennstoffbett von Biomasse-Rostfeuerungen abbildet. Diese Arbeit beschäftigt sich mit der Konstruktion und dem Bau eines Flammenreaktors und einer Gasverteilungsstation zur Erzeugung von kalten Strömungen ohne chemische Reaktion und partiell vorgemischten Flammen mit chemischer Reaktion, welche die niedrig-turbulenten Strömungen über dem Brennstoffbett in Biomasse Rostfeuerungen genähert abbilden sollen. Zur Untersuchung der auftretenden Gas- und Luftsträhnen und deren Einfluss auf den Mischungsfortschritt über dem Biomasse Brennstoffbett, wurde für den Versuchsaufbau ein Düsenkonzept zur Gas- und Luftverteilung verwendet. In kalten Strömungen sollen die Mischungseffekte niedrig turbulenter Strömungen sowie der Mischungsfortschritt aufgrund der Strähnenbildung, entkoppelt von chemischen Reaktionen, untersucht werden. In den Flammen gilt es zusätzliche Einflüsse, wie die Expansion des Gases und die chemischen Reaktionen, zu untersuchen. Im Rahmen dieser Diplomarbeit wurden im Flammenreaktor extraktive FTIR- und RGA-Spezieskonzentrationsmessung in kalten Strömungen und in Flammen sowie optische LDA-Gasgeschwindigkeitsmessungen in kalten Strömungen durchgeführt. Für die finalen Messungen wurden nur Gaskonzentrationsmessungen mittels FTIR und RGA durchgeführt und diskutiert, da die LDA-Messeinheit nicht mehr zur Verfügung stand. Die Messergebnisse in kalten Strömungen mit einem CO2/N2-Gasgemisch und einem Luftstrom, liefern rotationssymmetrische CO2- und O2-Konzentrationsprofile. Die Messergebnisse zeigen, dass der Mischungsfortschritt entlang der Strömungsrichtung weitgehend entkoppelt ist von den Gaseintrittsgeschwindigkeiten vGas=2 m/s bis vGas=4. Die Konzentrationsergebnisse der Messungen mit den CO2/N2/Luft-Gemischen konnten mittels einer Stoffbilanz erfolgreich geprüft werden. Die Messergebnisse in kalten Strömungen entsprechen bezüglich der Gasgeschwindigkeiten zwischen 2 und 4 m/s sowie mit den Reynoldszahlen zwischen 800 und 9000 den laminaren bis niedrig-turbulenten Strömungsbedingungen von partiell vorgemischten Flammen über dem Brennstoffbett in Biomasse Rostfeuerungen. Die Messergebnisse der Flammenmessungen mit einem CH4/Luft-Gasgemisch und einem Luftstrom, liefern mit RGA- und FTIR-Messungen nicht reproduzierbare Ergebnisse innerhalb der Flamme und weisen große Gasspeziesasymmetrien in der Flamme auf. Die Messergebnisse zeigen, dass die Gaseintrittsgeschwindigkeiten vGas=2 m/s bis vGas=4 mit dem Verbrennungsfortschritt von CH4 in Strömungsrichtung gekoppelt sind. Die Konzentrationsergebnisse der Flammenmessungen mit einem CH4/Luft-Gemisch konnten mit den vorhandenen Messwerten nicht erfolgreich mittels einer Stoffbilanz geprüft werden. Zusammengefasst liefen die Konzentrationsmessungen in kalter Strömung sehr gute Messergebnisse in Hinblick auf Strömungsstabilität, rotationssymmetrische Strömungsausbildung und Messgenauigkeit. Für Messungen in kalten Strömungen sind die Messverfahren mittels FTIR und RGA zur Konzentrationsmessung und das LDA-Messverfahren zur Gasgeschwindigkeitsmessung zu empfehlen. Die RGA- und FTIR-Konzentrationsmessungen in den Flammen liefern keine zufriedenstellenden Messergebnisse aufgrund von Flammenasymmetrien sowie dem Einfluss der extraktiven Probenahme mittels einer Probenahmelanze. Für Flammenmessungen im Reaktor sind berührungsfreie, optische Messverfahren mit einer hohen Messauflösung zu empfehlen. Durchlichtverfahren benötigen zwei optische Zugänge zum Messraum. Für die Anwendung von Durchlichtverfahren müsste der Flammenreaktor von einem auf zwei optische Zugänge umgebaut werden.  

Conference presentations and posters | 2012

Frauen‐ und Familienförderung beginnt bei Männern – Systematisches Karenzmanagement für Mütter, Väter und das Unternehmen

Haslinger W. Frauen‐ und Familienförderung beginnt bei Männern – Systematisches Karenzmanagement für Mütter, Väter und das Unternehmen, Expertenforum K3 "Karenzmanagement macht Karriere" 2012, 9th of May 2012, Linz, Austria.

Details
Conference presentations and posters | 2012

Fuel indexes –a novel method for the evaluation of relevant combustion properties of new biomass fuels

Sommersacher P, Brunner T, Obernberger I. Fuel indexes –a novel method for the evaluation of relevant combustion properties of new biomass fuels, Conference Impacts of Fuel Quality on Power Production and Environment 2012, 23th-27th of September 2012, Puchberg, Austria.

Details

The increasing demand for biomass fuels leads to the introduction of new biomass fuels into the market. These new biomass fuels (e.g., wastes and residues from agriculture and the food industry, short rotation coppices, and energy crops) are usually not well-defined regarding their combustion behavior. Therefore, fuel characterization methods with a special focus on combustion-related problems (gaseous NOx, HCl, and SOx emissions, ash-melting behavior, and PM emissions) have to be developed. For this purpose, fuel indexes are an interesting option. Fuel indexes are derived from chemical fuel analyses and are checked and evaluated regarding their applicability by measurements performed at lab- and real-scale combustion plants for a large variety of fuels. They provide the possibilities for a pre-evaluation of combustion-relevant problems that may arise from the use of a new biomass fuel. A possible relation to describe the corrosion risk is, for instance, the molar 2S/Cl ratio. The N content in the fuel is an indicator for NOx emissions, and the sum of the concentrations of K, Na, Zn, and Pb in the fuel can give a prediction of the aerosol emissions, whereas the molar (K + Na)/[x(2S + Cl)] ratio provides a first indication regarding the potential for gaseous HCl and SOx emissions. The molar Si/K ratio can supply information about the K release from the fuel to the gas phase. The molar Si/(Ca + Mg) ratio can give indications regarding the ash-melting temperatures for P-poor fuels. For P-rich fuels, the (Si + P + K)/(Ca + Mg) ratio can be used for the same purpose. The fuel indexes mentioned can provide a first pre-evaluation of combustion-relevant properties of biomass fuels. Therefore, time-consuming and expensive combustion tests can partly be saved. The indexes mentioned are especially developed for grate combustion plants, because interactions of the bed material possible in fluidized-bed combustion systems are not considered.

Other Publications | 2012

Gasaufbereitung für die Fischer-Tropsch-Synthese

Pölzl, P. Gasaufbereitung für die Fischer-Tropsch-Synthese, Master Thesis, Technische Universität Wien, Vienna, Austria, 2012.

Details
Other papers | 2012

Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000

Haberl H, Kastner T, Schaffartzik A, Ludwiczek N, Erb K-. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000. Ecol Econ. 2012;84:66-73.

External Link Details

Global trade of biomass-related products is growing exponentially, resulting in increasing 'teleconnections' between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The 'embodied human appropriation of NPP' (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism. © 2012 Elsevier B.V.

Conference presentations and posters | 2012

High efficient industrial process carbon capture (CC) – Field tests

Martini S, Kleinhappl M, Zeisler J. High efficient industrial process carbon capture (CC) – Field tests, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1127-1131.

Details

In large scale industrial processes, such as iron production, or in gasification based process chains (coal/biomass to synthesis gas, fuel, or power, etc.), the separation of CO2 (Carbon Capture-CC) can lead to ecological and procedural benefits. Chemical absorption of CO2 is a well proved technology for CC with comparatively low electrical energy demand. However, the high heat demand, absorption kinetics, CO2 capacity and sorbent degradation are limiting factors for the industrial application. Further investigation and development of sorbent-solutions in relation to specific gas conditions are necessary for optimisation. For testing different sorbent-solutions a mobile test plant was designed and built up. Focus of this work was the evaluation of process key data for CC in blast furnace gas under real conditions. The tests have been carried out continuously up to 300 hours. Aqueous monoethanol-amine (MEA), diethanol-amine (DEA) and methyl-diethanol-amine (MDEA) solutions have been investigated. Detailed analyses of the process gas, analyses of used liquids (chemical properties, degradation products) and the examination of process data lead to further development in process design, control strategies for specific applications and give routes for an efficient implementation of CC to increase the benefit in the overall process chain.

Other papers | 2012

In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

Jalava PI, Happo MS, Kelz J, Brunner T, Hakulinen P, Mäki-Paakkanen J, et al. Invitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies. Atmos Environ. 2012;50:24-35.

External Link Details

Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM 1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM 1 samples from the furnaces were collected in an experimental setup with a Dekati ® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic composition and inorganic ash composition affected the toxicological responses differently. In conclusion, combustion technology largely affects the particulate emissions and their toxic potential this being reflected in substantially larger responses in devices with incomplete combustion. These differences become emphasized when the large emission factors from old technology appliances are taken into account. © 2012 Elsevier Ltd.

Peer reviewed papers | 2012

Influence of operating conditions on the performance of biomass-based Fischer–Tropsch synthesis

Sauciuc A, Abosteif Z, Weber G, Potetz A, Rauch R, Hofbauer H, Schaub G, Dumitrescu L. Influence of operating conditions on the performance of biomass-based Fischer–Tropsch synthesis. Biomass Conversion. 2012;2(3):253-263.

External Link Details
Conference presentations and posters | 2012

Influence of physical properties of the feedstock on gasification in a dual fluidized bed steam gasifier

Wilk V, Hofbauer H. Influence of physical properties of the feedstock on gasification in a dual fluidized bed steam gasifier, International Conference on Fluidized Bed Combustion (FBC) 2012, 3rd-6th of June 2012, Naples, Italy. p 979-804. (peer reviewed)

Details
Conference presentations and posters | 2012

Influence of sampling rate for gravimetric determination of PM concentrations of a small scale pellet stove

Reichert G. Influence of sampling rate for gravimetric determination of PM concentrations of a small scale pellet stove, Conference ”Dust measuring procedures for small biomass furnaces” 2012, 7th of November 2012, Berlin, Germany.

Details
Conference presentations and posters | 2012

Integrated carbon capture (CC), field tests and further perspectives in industrial

Martini S. Integrated carbon capture (CC), field tests and further perspectives in industrial, 5 th international Freiberg Conference on IGCC & XtL Technologies 2012, 21st-24th of May 2012, Leipzig, Germany.

Details
Conference presentations and posters | 2012

Integration Aspects in the Next Generation of CHP Plants Based on Gasification

Rauch R. Integration Aspects in the Next Generation of CHP Plants Based on Gasification, International Seminar on Gasification 2012, 18th-19th of October 2012, Stockholm, Sweden.

Details
Other Publications | 2012

Integration vom Hydroprocessing in die Fischer-Tropsch Synthese

Götz, F. Integration vom Hydroprocessing in die Fischer-Tropsch Synthese, Master Thesis, Technische Universität Wien, Vienna, Austria, 2012.

Details

Conference presentations and posters | 2012

Investigation of the Thermal Conversion Behavior of Polyethylene Mixtures in a Dual Fluidized Bed Gasifier

Wilk V, Hofbauer H. Investigation of the Thermal Conversion Behavior of Polyethylene Mixtures in a Dual Fluidized Bed Gasifier, 3rd International Symposium on Gasification and its Applications (iSGA-3) 2012, 16th of October 2012, Vancouver, Canada. (peer reviewed) (oral presentation)

Details
Other papers | 2012

Investigations on hydrotreating of fischer tropsch-biowaxes for generation of bio-products from lignocellulosic biomass

Schablitzky HW, Lichtscheidl J, Rauch R, Hofbauer H. Investigations on hydrotreating of fischer tropsch-biowaxes for generation of bio-products from lignocellulosic biomass. Modern Applied Science. 2012;6(4):28-37.

Details

The present study describes the application of Fischer Tropsch biowaxes as a feedstock in a pilot-scale hydroprocessing unit at operating conditions very similar to industrial size hydrotreating plants of traditional refineries. The project focus on a future coprocessing of biowax/gasoil blends due to produce bio-products derived from lignocellulosic biomass: crack gases, naphtha, kerosene, diesel and a residual product. Hydro-processing plants operating at mild cracking conditions support the production of high amounts in middle distillates at reduced coke formation. Premium bio-diesel and bio-kerosene with excellent cold flow properties are the main objective of the investigations. Various test runs with different hydrotreating catalysts have been conducted due to determine the influence of waxy feedstock on catalyst behavior and product distribution. Depending on the catalyst selected, the fixed bed reactor streamed by hydrogen operates under specified cracking condition defined by the following parameters: reactor temperature, hydrogen pressure and weight hourly space velocity (WHSV). Test runs with selected catalysts - isodewaxing (IDW), hydro-desulphurization (HDS) and the catalytic deparaffination (CDP) catalyst - have been executed at constant process conditions in order to compare the product spectrum and properties of product groups. Highest amounts of bio-diesel and bio-kerosene with excellent cold flow properties can be obtained with the IDW catalyst. This NiW- based catalyst with special additives generates cleaved and reshaped molecular fragments via skeletal isomerisation increasing the isoparaffin content of naphtha and middle distillates. Further investigations with this catalyst type have been executed due to determine the catalyst aging effect in a separate long term test run. The loss of cracking severity during operation of the catalyst can be observed by a steady decline in conversion. Unsaturated hydrocarbons such as olefins and diolefines in the bio-feedstock support the formation of a coke layer on the catalyst surface resulting in reinforced deactivation. As the consequence naphtha and finally the crack gases and the kerosene fraction are shifted to higher molecular fragments increasing the diesel and residue yield. Physicochemical properties of the product groups obtained during the test run vary and especially the cold flow properties from the diesel and kerosene fraction degrade significant. Balancing the conversion decline of the catalyst in operation can be realized by increasing the reactor temperature and the hydrogen pressure, but the effect is time limited.
 

Conference presentations and posters | 2012

Key-note lecture: Novel characterisation methods for biomass fuels and their application

Obernberger I. Key-note lecture: Novel characterisation methods for biomass fuels and their application, Conference Impacts of Fuel Quality on Power Production and Environment 2012, 23th-27th of September 2012, Puchberg, Austria.

Details
Conference presentations and posters | 2012

Modern logwood stoves – Requirements, Development, Evaluation

Schmidl C, Aigenbauer S, Figl F, Haslinger W, Moser W, Verma VK. Modern logwood stoves – Requirements, Development, Evaluation, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Peer reviewed papers | 2012

Odor, gaseous and PM 10 emissions from small scale combustion of wood types indigenous to central Europe

Kistler M, Schmidl C, Padouvas E, Giebl H, Lohninger J, Ellinger R, et al. Odor, gaseous and PM 10 emissions from small scale combustion of wood types indigenous to central Europe. Atmos Environ. 2012;51:86-93.

External Link Details

In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets.

The composite average emission rates for log wood and briquettes were 2030 mg MJ−1 for CO; 89 mg MJ−1 for NOx, 311 mg MJ−1 for CxHy, 67 mg MJ−1 for particulate matter PM10 and average odor concentration was at 2430 OU m−3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx – comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m−3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m−3 for hornbeam to 5217 OU m−3 for fir, indicating a considerable influence of the wood type on odor concentration.

Conference presentations and posters | 2012

Operation Experience & Developments at Industrial Plants with Dual‐Fluid Gasification

Hofbauer H. Operation Experience & Developments at Industrial Plants with Dual‐Fluid Gasification, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy.

Details
Conference presentations and posters | 2012

Particulate matter emissions from small-scale biomass combustion systems – characterisation and primary measures for emission reduction

Brunner T. Particulate matter emissions from small-scale biomass combustion systems – characterisation and primary measures for emission reduction, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2012

Prediction of biomass ash melting behaviour – correlation between the data obtained from thermodynamic equilibrium calculations and simultaneous thermal analysis (STA)

Evic N, Brunner T, Oberberger I. Prediction of biomass ash melting behaviour – correlation between the data obtained from thermodynamic equilibrium calculations and simultaneous thermal analysis (STA), 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 807-813.

Details
Conference presentations and posters | 2012

Processing Options Of Heavy Fractions From MBT Plant

Meirhofer M, Ragoßnig AM, Sommer M. Processing Options Of Heavy Fractions From MBT Plant, ISWA Annual Congress Florence 2012, 18th of September 2012, Florence, Italy.

Details
Conference presentations and posters | 2012

Processing Options Of Heavy Fractions From MBT Plants

Meirhofer M, Ragoßnig AM, Sommer M. Processing Options Of Heavy Fractions From MBT Plants, ISWA Annual Congress Florence 2012, 17th-19th of September 2012, Florence, Italy. (peer reviewed)

Details

Heavy fractions resulting from mechanical treatment stages of Mechanical Biological Treatment (MBT) plants are posing very specific demands with regard to further treatment/disposal as they contain a high portion of inert material as well as a high portion of high calorific components. Based on the current Austrian legal situation (landfill ordinance: max. Higher Calorific Value (HCV) for MBT-fractions to be landfilled = 6,600 kJ/kg DM) this waste stream cannot be landfilled but must be thermally treated. In economic terms it is desirable to separate high calorific from inert waste components in order to allow for a material specific routing taking advantage of the difference in the costs for the downstream treatment / disposal.
In this conference contribution results of extensive processing experiments with the heavy fraction from the mechanical stage of the MBT plant of Umweltdienst Burgenland in Oberpullendorf, Austria, are presented. Experiments have been conducted with three different sensor-based automatic sorting systems (NIR – Multiplexer, NIR – Spectral Imaging, X-Ray transmission) as well as two density based processing technologies (wet treatment with a jigger, dry treatment with a cross flow air separation device). In addition a rotary shredder, which allows selective crushing, followed by screening has been investigated.
The performance of the processing options have been evaluated by characterizing the resulting product streams by means of manual sorting in order to evaluate purity and yield achieved by the respective treatment options. In addition to that chemical and physical parameters relevant for further treatment / disposal steps for the resulting product streams have been analysed. The inert fraction has been evaluated regarding the landfilling on a mass waste landfill on one hand and on a C&D waste landfill on the other hand. The high calorific product stream has been evaluated with regard to its thermal utilization.
Complementing the technical evaluation of the processing options an economical assessment of the processing options looked at including the economical implications of the resulting changes in the routing of the waste streams has been conducted.

Conference presentations and posters | 2012

Produktentwicklung von Biomassekesseln – Rollenprüfstandstest für Biomassekessel kleiner Leistung

Haslinger W. Produktentwicklung von Biomassekesseln – Rollenprüfstandstest für Biomassekessel kleiner Leistung, Innovationsforum Ökoenergie-Cluster 2012, 18th of October 2012, Linz, Austria.

Details
Conference presentations and posters | 2012

Recent Gas sampling and analysis methods for the determination of condensable gas components in fuel gases and synthesis gases from pyrolysis and gasification

Neubauer Y, Kleinhappl M. Recent Gas sampling and analysis methods for the determination of condensable gas components in fuel gases and synthesis gases from pyrolysis and gasification, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1095-1096.

Details

A workshop on sampling and analysis of gas impurities (mainly condensables (tar)) in gases from thermochemical conversion processes was held in Berlin at the 19th EU BC+E. Here the outcomes are shortly summarized and the activities in the after course of the workshop are briefly discussed. An international working group formed to further discuss the important topics of analytics in these gas families was formed. Further ongoing and planned activities will be mentioned.

Conference presentations and posters | 2012

Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas

Zeisler J, Kleinhappl M, Martini S, Neubauer Y. Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 884-897.

Details

In the last years sampling at various gasification plants has been performed at Bioenergy2020+. The equipment, which is based on the recommendations of the tar guideline, has been further developed and adjusted to specific needs. For an evaluation of the procedure different parts of the equipment were tested with a new developed gas-generating unit. Most effort has been performed at the absorption of BTXE-S and PAH in 2-propanol. Additionally new characterisation-methods for pyrolysis samples with SPE (Solid Phase Extraction) have been tested and a qualitative identification of main components could be achieved. Furthermore tests for stabilisation and storage of samples were done. The results of the investigations represent an ongoing optimisation-work with the aim of establishing an international working-group which will compile guidelines for sampling organic and inorganic components at gasification and pyrolysis plants with different new online and offline methods. The appendix delivers some useful data about the substances and dynamic precipitation in an investigated impinger step.

Other papers | 2012

Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant – Influence of pyrolysis temperature on pyrolysis product performance

Kern S, Halwachs M, Kampichler G, Pfeifer C, Pröll T, Hofbauer H. Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant - Influence of pyrolysis temperature on pyrolysis product performance. J Anal Appl Pyrolysis. 2012;97:1-10.

External Link Details

The idea of co-firing biomass in an already existing coal-fired power plant could play a major contribution in the reduction of carbon dioxide emissions. Huge amounts of unused biomass in terms of agricultural residues such as straw, which is a cheap and local feedstock, are often available. But due to the high amount of corrosive ash elements (K, Cl, etc.), the residues are usually not suitable for co-firing in a thermal power plant. Therefore, the feedstock is converted by low temperature pyrolysis into gaseous pyrolysis products and charcoal. A 3 MW pyrolysis pilot plant located next to a coal-fired power plant near Vienna was set up in 2008. For the process, an externally heated rotary kiln reactor with a design fuel power of 3 MW is used which can handle about 0.6-0.8 t/h straw. The aim is to investigate the fundamentals for scale-up to the desired size for co-firing in a coal-fired power plant. In addition to the desired fuel for the process, which is wheat straw, a testing series for DDGS was also performed. The high amount of pyrolysis oil in the gas had positive effects on the heating value of the pyrolysis gas. Chemical efficiencies of this pyrolysis pilot plant of up to 67% for pyrolysis temperatures between 450°C and 600°C can be reached. The focus of this work is set on the pyrolysis products and their behavior at different pyrolysis temperatures as well as the performance of the pyrolysis process. © 2012 Elsevier B.V.

Conference presentations and posters | 2012

Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts

Martini S. Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts, 5th international Freiberg Conference on IGCC & XtL 2012, 21st-24th of May 2012, Leipzig, Germany. (oral presentation)

Details
Conference presentations and posters | 2012

Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts

Martini S. Sofc‐field tests with Biomass gasification derived product gas for the evaluation of stationary BIG‐SOFC‐CHP‐concepts, 5 th international Freiberg Conference on IGCC & XtL Technologies 2012, 21st-24th of May 2012, Freiberg, Germany.

Details
Conference presentations and posters | 2012

State-of-the-art and assessment of filter technologies for residential biomass combustion systems

Obernberger I. State-of-the-art and assessment of filter technologies for residential biomass combustion systems, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2012

State‐of‐the‐art and assessment of filter technologies for residential biomass combustion systems

Mandl C, Obernberger I, Biedermann F. State‐of‐the‐art and assessment of filter technologies for residential biomass combustion systems, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 732-738.

Details

The objectives of the present study were to: (a) develop an appropriate estimation method for assessing the characteristic ash melting temperatures of different biomass fuels by means of thermodynamic equilibrium calculations (TEC) based on ash analysis data, (b) estimate the correlation between the results obtained from TEC and the experimentally received data for the melting temperatures using a TGA/DSC-method (thermogravimetric analysis/differential scanning calorimetry) and, (c) evaluate the applicability of the TEC and DSC methods as prediction tools for the melting behaviour of biomass ashes in relation to the conventional ash melting test according to DIN 51730. The results are presented for four selected biomass ash samples: straw, miscanthus, beech and bark (spruce). The agreement between the results obtained from TEC and experimental results (TGA/DSC and standard ash melting test) was reasonably good. For comparison between the experimental results and TEC regarding the deformation temperature it is recommended to utilize the temperature range between T15 and T30 estimated by TEC at 15 wt% and 30 wt% molten phase respectively. Differences between calculated melting temperatures T30 for straw (770°C) and bark (1,280°C) on the one side, and experimentally determined data on the other side are lower than 100°C. In the case of miscanthus and beech ash the prediction was with a deviation of around 200°C less precise. Flow temperatures measured as per standard test (DIN 51730) show generally a good agreement with the TEC fusion temperatures at 70 wt% of molten fraction (T70) for straw, miscanthus and bark ash. In case of beech ash is the TEC prediction of T70 (>1,600°C) moved to higher temperatures compared to experimental expected 1,380°C. The results of this study in combination with reliable databases and an appropriate calculation model, qualify the thermodynamic equilibrium calculations as a useful technique for a prediction of the ash melting behaviour including the assessment of characteristic melting temperatures.

Conference presentations and posters | 2012

STATUS and FUTURE of bioSNG in EUROPE

Rauch R. STATUS and FUTURE of bioSNG in EUROPE, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details
Conference presentations and posters | 2012

Steigerung des Jahreswirkungsgrads von Pelletsheizungen

Schmidl C. Steigerung des Jahreswirkungsgrads von Pelletsheizungen, 12. Industrieforum Pellets 2012, 9th-10th of October 2012, Berlin, Germany.

Details
Conference presentations and posters | 2012

Strategic Research Priorities for Biomass Technology

Haslinger W. Strategic Research Priorities for Biomass Technology, 4th Annual Meeting of the RHC-platform biomass panel 2012, 10th of October 2012, Berlin, Germany.

Details
Conference presentations and posters | 2012

System performance of a storage integrated pellet boiler

Aigenbauer S, Hartl M, Malenkovic I, Simetzberger A, Vverma VK, Schmidl C. System performance of a storage integrated pellet boiler, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1320-1324.

Details

A pellet burner directly integrated into the solar storage provides heat and domestic hot water for small
residential applications in an environment-friendly way. The objective of this work was to evaluate the system
performance of a storage integrated pellet boiler in laboratory under transient test conditions. Furthermore, the type
test results according to ÖNORM EN 303-5 [1] of the last decade were compared with monitoring data of systems
with separated boiler and heat storage. The laboratory tests allowed finding relevant parameters and losses, which
influence the system performance. A developed computer simulation model shows the potential to optimize the
performance of the investigated boiler.

Conference presentations and posters | 2012

The actual need of a guideline for sampling and analysis of chemical matter (not tars) from product gas, pyrolysis gas and synthesis gas

Zeisler J, Kleinhappl M, Martini S, Neubauer Y. The actual need of a guideline for sampling and analysis of chemical matter (not tars) from product gas, pyrolysis gas and synthesis gas, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 919-925.

Details

Due to the increasing number of different online and offline methods and procedures for sampling at gasification and pyrolysis plants a comparison of the measured values is difficult. About the sampling of tars already a number of detailed guidelines and a common approach are established [2]. In terms of discrete chemical impurities the missing of a guideline for sampling at biomass¬ plants is an obstacle for implementing sampling systems in new plants or experimental assemblies. Nevertheless the knowledge is available at several institutions but it has to be collected. Within this paper the basic challenges of sampling are mentioned, the system at Bioenergy2020+ is explained in detail and about the parameters NH3, H2S & HCN useful results of optimisation are reported. This status should help to point out the need of a reliable library of methods. According the first systematisation of offline and online sampling respectively detection a table of application is proposed. The detailed knowledge for this will be treated and exchanged within an established working group which should lead to a guideline (at least methods library) for sampling of trace components as described.

Other papers | 2012

The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier

Kirnbauer F, Wilk V, Kitzler H, Kern S, Hofbauer H. The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier. Fuel. 2012;95:553-562.

Details

The utilization of biomass for the substitution of fossil fuels to reduce greenhouse gas emissions in biomass steam gasification plants is a promising technology for the production of electricity, heat, and fuels for transportation. Experience from industrial scale dual fluidized bed steam gasification plants showed a modification of the bed material due to the interaction of the bed material (olivine) with biomass ash components and additives. In this paper the influence of bed material modification on the gasification properties of used olivine from an industrial scale plant in Güssing is compared with the case of fresh olivine. The trials were carried out under similar conditions in a pilot plant at the Vienna University of Technology. The pilot plant trials showed an increase in hydrogen and carbon dioxide in the product gas with the used bed material while the content of carbon monoxide in the product gas decreased. The exothermal water–gas shift reaction is enhanced by the used bed material, resulting in a lower energy demand for the gasification. Tar content was decreased by around 80% for tars detected by gas chromatography–mass spectrometry (GCMS) and the composition of the tar showed less components during the trial with used bed material.

The results obtained with the used bed material at the 100 kW pilot plant are in good agreement with those for the 8 MW industrial plant in Güssing, confirming good scale-up properties from the 100 kW plant to industrial scale plants.

Other papers | 2012

Variation of Feedstock in a Dual Fluidized Bed Steam Gasifier ‐ Influence on Product Gas, Tar Content and Composition

Schmid JC, Wolfesberger U, Koppatz S, Pfeifer C, Hofbauer H. Variation of feedstock in a dual fluidized bed steam gasifier-influence on product gas, tar content, and composition. Environmental Progress and Sustainable Energy. 2012;31(2):205-15.

External Link Details

A steam blown dual fluidized bed gasification plant was used to yield a nitrogen (N 2) free product gas (synthesis gas) from various biomass fuels. In addition to the variation of process parameters like temperature, steam to carbon ratio, fluidization rate, and the influence of different bed materials, various feedstock inputs affected the generation of the product gas. This study focuses on the gasification of different biomass feedstock. The variation of biomass implies wood chips, wood pellets, sewage sludge pellets, and straw pellets. The chosen evaluated experimental results are all gained from the uniformly operated "classical" 100 kW "DUAL FLUID" gasifier at Vienna University of Technology at constant gasification temperatures between 800°C and 810°C. In the "classical" design, the gasification reactor is a bubbling fluidized bed. The composition and ash melting behavior of each feedstock is displayed, as well as the ranges of the product gas compositions generated. Beside the main gaseous product gas components, typical content ranges of dust and char are highlighted. The content and composition of tar in the product gas is discussed. Further it is possible to present gravimetrical and gas chromatography coupled with mass spectrometry measured tar values. Not less than five significant component-groups of tar will also be outlined for each feedstock. © 2012 American Institute of Chemical Engineers (AIChE).

Conference presentations and posters | 2012

Vergleichsanalyse der Vergasung eines biogen und fossil angereicherten EBS

Sommer M, Ragoßnig AM, Kleinhappl M. Vergleichsanalyse der Vergasung eines biogen und fossil angereicherten EBS, DepoTech 2012, 6th-9th of October 2012, Leoben, Austria.

Details
Conference presentations and posters | 2012

Verwertung von Reststoffen aus der Lebensmittelproduktion zur Gewinnung von Prozessenergie.

Drosg B, Ortner M, Bochmann G. Verwertung von Reststoffen aus der Lebensmittelproduktion zur Gewinnung von Prozessenergie, Lebensmittel-Cluster Oberösterreich „ Strom - Wärme - Kälte - Wege zum energieeffizienteren Lebensmittelbetrieb“ 2012, 21th of March 2012, Linz, Austria.

Details
Other Publications | 2012

Zustandsschätzung einer Biomassefeuerungsanlage und deren modellbasierte Regelung

Seeber, R. Zustandsschätzung einer Biomassefeuerungsanlage und deren modellbasierte Regelung, Master Thesis, Technische Universität Graz, Graz, Austria, 2012.

Details

Die Verbrennung fester Biomasse gewinnt als nachhaltige Form der Energienutzung zunehmend an Bedeutung. Dabei stellt die Forderung nach einem schadstoffarmen Betrieb von Biomassefeuerungsanlagen bei möglichst hohem Wirkungsgrad eine Herausforderung an deren Regelung dar. Ziel dieser Arbeit ist die Untersuchung und Verbesserung eines existierenden, modellbasierten Regelungskonzepts, welches die Methode der Eingangs-Ausgangslinearisierung zur Regelung sowie einen Erweiterten Kalmanfilter zur Zustandsschätzung vorsieht. Die Arbeiten wurden in Kooperation mit dem Kompetenzzentrum Bioenergy 2020+ anhand einer Versuchsanlage (Flachschubrostfeuerung mit einer Kesselnennleistung von 180 kW) durchgeführt. Dabei lassen sich eine Reihe von Störeinflüssen identifizieren, unter anderem etwa die bei dieser Anlage besonders stark ausgeprägten Schwankungen des abgebauten Brennstoffs. Die geeignete Berücksichtigung dieser Störeinflüsse im Kalmanfilter durch Formfilter wird untersucht. Ebenso erfolgt die Modellierung von variablen Totzeiten und Sensordynamiken, die bei der Messung einzelner Größen auftreten, durch zusätzliche Sensormodelle. Auf Basis dieser Ergebnisse wird ein neuer Kalmanfilter vorgeschlagen und implementiert. Die auftretenden Störeinflüsse führen bei der exakt linearisierten Strecke zu einer Abweichung vom geforderten linearen Übertragungsverhalten. Daher wird auch der Regler dahingehend modifiziert, dass die vom Kalmanfilter rekonstruierten Störgrößen bei der Ermittlung des nichtlinearen Zustandsregelgesetzes verwendet werden. Das modifizierte Regelungskonzept wurde abschließend an der untersuchten Anlage implementiert und experimentell verifiziert. Dabei wurden gegenüber der ursprünglichen Regelung eine deutliche Verbesserung bei der Stabilisierung von Vorlauf- und Sekundärzonentemperatur sowie eine geringere Abweichung des Verbrennungsluftverhältnisses im Brennstoffbett vom vorgegebenen Sollwert erzielt.

Peer reviewed papers | 2011

A carbon-cycle-based stochastic cellular automata climate model

Lichtenegger K, Schappacher W. A carbon-cycle-based stochastic cellular automata climate model. International Journal of Modern Physics C. 2011;22(6):607-621.

External Link Details

In this paper a stochastic cellular automata model is examined, which has been developed to study a "small" world, where local changes may noticeably alter global characteristics. This is applied to a climate model, where global temperature is determined by an interplay between atmospheric carbon dioxide and carbon stored by plant life. The latter can be released by forest fires, giving rise to significant changes of global conditions within short time.

Conference presentations and posters | 2011

Advanced biomass fuel characterisation by the application of dedicated fuel indexes

Brunner T, Moradi F, Obenberger I. Advanced biomass fuel characterisation by the application of dedicated fuel indexes, Central European Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details
Conference presentations and posters | 2011

Agricultural Biomass for Small-scale Combustion Units

Wopienka E. Agricultural Biomass for Small-scale Combustion Units, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details
Conference presentations and posters | 2011

Biomass combustion technologies – state-of-the-art and relevant future developments (keynote lecture)

Obernberger I. Biomass combustion technologies - state-of-the-art and relevant future developments (keynote lecture), Central European Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria. (oral presentation)

Details
Conference presentations and posters | 2011

CFD simulation of biomass grate furnaces with a comprehensive 3D packed bed model

Mehrabian R, Stangl S, Scharler R, Obernberger I, Weissinger A. CFD simulation of biomass grate furnaces with a comprehensive 3D packed bed model, 25th German flame day 2011, 14th-15th of September 2011, Karlsruhe, Germany.

Details

Conference presentations and posters | 2011

CFD simulations as efficient tool for the development and optimisation of small-scale biomass furnaces and stoves

Scharler R, Benesch C, Obernberger I. CFD simulations as efficient tool for the development and optimisation of small-scale biomass furnaces and stoves, 19th European Biomass Conference and Exhibiton 2011, 6th-10th of June 2011, Berlin, Germany. p 4-12.

Details
Conference presentations and posters | 2011

CFD-Simulationen als innovatives Werkzeug für die Entwicklung und Optimierung von Biomasse-Kleinfeuerungsanlagen und Kaminöfen

Scharler R, Benesch C, Obernberger I. CFD-Simulationen als innovatives Werkzeug für die Entwicklung und Optimierung von Biomasse-Kleinfeuerungsanlagen und Kaminöfen, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details
Conference presentations and posters | 2011

Determination of annual efficiency and emission factors of small-scale biomass boiler

Schwarz M, Heckmann M, Lasselsberger L, Haslinger W. Determination of annual efficiency and emission factors of small-scale biomass boiler, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details

In the last decades certification tests of small-scale biomass systems have impressively shown the improvement of the state of the art. Though, steady state measurements represent results only foroptimal operation. In practice results differ due to varying operating conditions. Therefore, of a test stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method includes a heat loss model for thermal storages too. It can be used to test automatically fed biomass boiler, manually loaded biomass boilers and boiler / heat accumulator combinations. For the evaluation of the measurement data a calculation method based on mass flows was developed. The results of our experiments show that the newly developed method is a good tool to evaluate small-scale biomass boilers. With this method an easy and reliable instrument to determine annual system efficiencies and emission factors for realistic boiler operation is provided. The application of the method will prove that modern small-scale biomass combustion systems have the potential to significantly contribute to the reduction of air pollutants and to increase overall energy system efficiency.

Conference presentations and posters | 2011

Development of biomass fired boilers with an advanced CFD model for ash deposit and aerosol formation

Schulze K, Scharler R, Obernberger I. Development of biomass fired boilers with an advanced CFD model for ash deposit and aerosol formation, 9th European Conference on Industrial Furnaces and Boilers 2011, 26th-29th of April 2011, Estoril, Portugal.

Details
Conference presentations and posters | 2011

Highlights der Bioenergieforschung

Fercher E. Highlights der Bioenergieforschung, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details
Conference presentations and posters | 2011

Influence of combustion conditions on the genotoxic potential of fine particle emissions from small-scale wood combustion

Brunner T, Kelz J, Obernberger I, Javala P, Hirvonen M. Influence of combustion conditions on the genotoxic potential of fine particle emissions from small-scale wood combustion, Central European Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details
Conference presentations and posters | 2011

LCA of small scale biomass combustion systems for the development of a product label (Ökobilanz von Biomasse-Kleinfeuerungsanlagen für die Entwicklung eines Produktlabels)

Jungmeier G, Lingitz A, Canella L, Haslinger W, Strasser C, Moser W. LCA of small scale biomass combustion systems for the development of a product label (Ökobilanz von Biomasse-Kleinfeuerungsanlagen für die Entwicklung eines Produktlabels), Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details
Conference presentations and posters | 2011

Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen

Meirhofer M, Ragossnig A, Pieber S, Sommer M. Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details

The processing of heterogeneous waste is a major challenge for waste treatment equipment used in mechanical-biological (MB) waste treatment plants. This conference contribution focuses on the technical feasibility and efficiency of different technologies for the processing of a heavy waste fraction from a MB-plant which contains a high portion of high caloric components. The aim is to meet the requirements for waste to be landfilled in Austria. Also economic considerations with regard to the implementation of an additional separation step and the resulting changes in the waste routing are discussed. The processing technologies looked at comprise sensor-based sorting technologies (NIR, X-ray transmission) as well as traditional mechanical density separation technologies such as a jigger and cross-flow air classification.

Conference presentations and posters | 2011

Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung

Pieber S, Ragossnig A, Sommer M, Meirhofer M, Curtis A, Pomberger R. Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details
Other papers | 2011

Validation of flow simulation and gas combustion sub-models for CFD-based prediction of NOx formation in biomass grate furnaces

Zahirović S, Scharler R, Kilpinen P, Obernberger I. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combustion Theory and Modelling. 2011;15(1):61-87.

External Link Details
Conference presentations and posters | 2010

Advanced modelling of deposit formation in biomass furnaces – investigation of mechanisms and comparison with deposit measurements in a small-scale pellet boiler

Schulze K, Scharler R, Telian M, Obernberger I. Advanced modelling of deposit formation in biomass furnaces – investigation of mechanisms and comparison with deposit measurements in a small-scale pellet boiler, Impacts of Fuel Quality on Power Generation 2010, 29th of August-3rd of September, Saariselka, Lapland.

Details
Conference presentations and posters | 2010

Advanced waste-splitting by sensor based sorting on the example of the MT-plant Oberlaa

Pieber S, Ragossnig A, Brooks L, Meirhofer M, Pomberger R, Curtis A. Advanced waste-splitting by sensor based sorting on the example of the MT-plant Oberlaa, DepoTech 2010, 3rd-5th of November 2010, Leoben, Austria. p 695-698.

Details

Heterogeneous wastes, which cannot be material-recycled easily are used for energetic utilization. Certain quality criteria need to be met in this context, addressing especially the chlorine content due to the product quality as well as to environmental and safety issues. In regard of current issues in climate policy concerning emission trading, also an increased biogenic content in these waste fractions is desirable. Therefore, experiments with a sensor-based sorting technology at pilot scale as well as large scale have been conducted to analyse the technical feasibility of this technology for its application on heterogeneous wastes to gain products with desired material and quality criteria. The results of pilot scale experiments show that the sensor-based sorting technology is generally technically feasible to gain waste fractions with the required characteristics, if the technology was adjusted to the specific waste stream. Due to restrictions during the large scale experiment a number of further issues need to be addressed in
further experiments to allow for a concluding evaluation of that treatment concept.

Conference presentations and posters | 2010

Annual efficiency determination of pellets boilers: Method, applications and new possibilities for the differentiation of the quality of pellets boilers

Haslinger W, Heckmann M, Schmidl C, Schwarz M. Annual efficiency determination of pellets boilers: Method, applications and new possibilities for the differentiation of the quality of pellets boilers, 10. Industrieforum Pellets, 7th-8th of September 2010, Stuttgart, Germany.

Details
Conference presentations and posters | 2010

Behandlungsoptionen für eine MBA Schwerfraktion am Beispiel MBA Oberpullendorf

Meirhofer M, Ragoßnig A, Pieber S, Brooks L, Fercher E. Behandlungsoptionen für eine MBA Schwerfraktion am Beispiel MBA Oberpullendorf, DepoTech 2010, 3rd-5th of November 2010, Leoben, Österreich.

Details
Conference presentations and posters | 2010

Challenges and requirements for the technical development of pellet heating systems.

Haslinger W, Schmidl C. Challenges and requirements for the technical development of pellet heating systems, 10. Industrieforum Pellets 2010, 7th-8th of September 2010, Stuttgart, Germany.

Details
Conference presentations and posters | 2010

Development of process routes for synthetic biofuels from biomass (BTL)

Weber G, Potetz A, Rauch R, Hofbauer H. Development of process routes for synthetic biofuels from biomass (BTL), 18th European Biomass Conference and Exhibiton 2010, 3rd-7th May 2010, Lyon, France. p 1829-1833.

Details

In Güssing a nearly nitrogen free product gas can be provided by the Fast Internal Circulating Fluidized Bed (FICFB) – gasification system. The main components of the product gas are hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4). A Fischer – Tropsch (FT-) trial plant uses the product gas components H2 and CO in an exothermic, catalytic reaction to produce hydrocarbon chains. Catalysts based on iron and cobalt are used for the synthesis. In Güssing a slurry reactor is used for low temperature FT – synthesis. The main parts of the plant are the gas cleaning section, the gas compression section, the FT – slurry reactor and the product separation section. In the year 2008 eight experiments with a catalyst based on iron and from April to July 2009 ten experiments with a catalyst based on cobalt were done. Over 1400 operating hours were reached and approximately 170 kg of FT – raw product was produced. The product of the experiments with cobalt catalyst was split into the fractions naphtha, diesel and waxes by vacuum distillation. The long chain waxes of the distillation were used in a hydro – treater to convert them to diesel.

Conference presentations and posters | 2010

Efficient biomass utilisation by polygeneration processes - Production of hydrogen, electricity and heat

Mayer T. Efficient biomass utilisation by polygeneration processes - Production of hydrogen, electricity and heat, ICPS 2010, 7th-9th of September 2010, Leipzig, Germany.

Details

A polygeneration process is about to be implemented at the biomass gasification plant in Oberwart, Austria. Apart from conventional heat and electricity production, product gas obtained from steam gasification of wood chips is used for production of hydrogen. A membrane separation process was chosen for this application. Meeting the requirements of robustness and simplicity are benefits of this technology, however, maximizing of purity and output of hydrogen is not given highest priority. Simulation results show the gas compositions of both permeate and retentate stream as a function of different membrane stage-cuts. Basically high hydrogen content in the permeate stream can be achieved, but only with the drawback of low stage-cuts. Moreover, the trade-off between hydrogen purity and hydrogen recovery as well as the influence of the operating pressure on the purity are illustrated.

Conference presentations and posters | 2010

Evaluating the Transient Behaviour of Biomass Based Micro-CHP Systems - Steam Piston Engine and Integrated Thermoelectric Power Generation

Friedl G, McCarry A, Aigenbauer S, Moser W, Haslinger W. Evaluating the Transient Behaviour of Biomass Based Micro-CHP Systems - Steam Piston Engine and Integrated Thermoelectric Power Generation, 18th European Biomass Conference 2010, 3rd-7th of May 2010, Lyon, France. p 1271-1282.

Details
Conference presentations and posters | 2010

Gas Cleaning and Treatment of product gas of a dual fluidised bed gasifier for CHP and synthesis applications

Rauch R. Gas Cleaning and Treatment of product gas of a dual fluidised bed gasifier for CHP and synthesis applications, SNG 2010, 30th of June-1st of July 2010, Concepcion, Chile.

Details
Conference presentations and posters | 2010

Gasification of residues and waste wood in a dual fluidized bed steam gasifier

Wilk V, Kitzler H, Hofbauer H. Gasification of residues and waste wood in a dual fluidized bed steam gasifier, ICPS 2010, 7th-9th of September 2010, Leipzig, Germany.

Details

Because of the limited resources of fossil fuels the efficient use of renewable energy is gaining importance. Renewable energy from biomass reduces CO2 emissions, which is a necessity to protect the global climate. In the dual fluidised bed steam gasifier wood chips are converted to heat, power and other products very successfully. This work presents alternative feedstocks for this process: biomass wastes, such as waste wood, bark and reed. Waste wood and bark have been gasified successfully and first results of these experiments in the pilot plant are presented in this paper. It has been assessed that reed is also an interesting feedstock suitable for the use in fluidised bed gasifiers.

Conference presentations and posters | 2010

Grid autarchy of automated pellets combustion systems by the means of thermoelectric generators

Höfteberger E, Moser W, Aigenbauer S, Friedl G, Haslinger W. Grid autarchy of automated pellets combustion systems by the means of thermoelectric generators, Thermoelectrics goes Automotive 2010, 9th-10th of December 2010, Berlin, Germany.

Details
Conference presentations and posters | 2010

Hydroprocessing of Fischer Tropsch biowaxes to 2nd generation biofuels

Schablitzky H, Rauch R, Hofbauer H. Hydroprocessing of Fischer Tropsch biowaxes to 2nd generation biofuels, ICPS 2010, 7th-9th of September 2010, Leipzig, Deutschland.

Details

Upgrading of Fischer–Tropsch (FT) biowaxes to second-generation biofuels via hydroprocessing is the final
step for increasing the fuel amount of the overall biomass conversion route: gasification of lignocellulosic biomass, FT synthesis, and hydroprocessing. The typical FT product portfolio consists of high molecular weight paraffinic waxes as the main product and FT fuels in the diesel and naphtha boiling range. OMV's objective and contribution to the project focus on achieving coprocessing of FT biowaxes with fossil feedstock using existing hydrotreating plants of crude oil refineries. Various test runs have been examined with a conventional refining catalyst under mild conditions (380–390°C, 5.8 MPa; WHSV, 0.7–1.3 h−1) in a pilot plant. Pure FT biowax is converted to gases, fuels, and an oil/waxy residue in a fixed-bed reactor with a porous catalyst layer technology. The presence of hydrogen in the reaction chamber reduces the fast deactivation of the catalyst caused by the formation of a coke layer around the catalyst particle surface and saturates cracked hydrocarbon fragments. Another approach is the creation of synthetic biodiesel components with excellent fuel properties for premium fuel
application. Basically, premium diesel fuel differs from standard diesel quality by cetane number and cold flow
properties. Hydroprocessed synthetic biodiesel (HPFT diesel) has compared to conventional diesel advantages in many aspects. Depending on the catalyst selected, premium diesel quality can be obtained by shifting cold flow
operability properties of HPFT fuels to a range capable even under extreme cold conditions. In addition, a highquality kerosene fraction is obtained to create bio jet fuels with an extremely deep freezing point, as low as −80°C. The isomerization degree, as well as the carbon number distribution of high paraffinic profile, and the branching degree have a major impact on the cold flow properties and cetane number. FT diesel has, compared to HPFT diesel, a slightly higher derived cetane number (DCN>83) and a cloud point of −9°C, whereas HPFT diesel reaches values as low as −60°C. Although the HPFT naphtha obtained consists of high amounts of isoparaffins, the RON/ MON values are comparable to fossil straight-run naphtha. The reason is that the branching degree of isoparaffins from the naphtha fraction is not sufficiently high enough to reach the typical octane number values of gasoline products delivered at filling stations. Assuming the goal of launching a premium biodiesel or biokerosene fuel to the market, these hydroprocessed synthetic biofuels from FT biowaxes are ideal blending components.

Conference presentations and posters | 2010

Integration of Sensor Based Sorting in the Mechanical Treatment of Municipal and Commercial Waste

Brooks L, Ragossnig A, Meirhofer M, Pieber S. Integration of Sensor Based Sorting in the Mechanical Treatment of Municipal and Commercial Waste, Orbit 2010, 29th of June-3rd of July 2010, Heraklion, Crete.

Details

Due to the Austrian legal framework provided by the landfill ordinance from 1996 which has been fully implemented by January 1st 2009, waste with an organic content higher than 5% TOC (total organic carbon) must not be dumped without prior treatment in order to avoid greenhouse gas emissions from landfills. Besides thermal treatment also mechanical-biological treatment (MBT) has been enabled by the regulator as an eligible treatment approach, whereby waste to be dumped must comply with the threshold of 6,600 kJ/kg DM (dry mass) stipulated for the upper caloric value. This is a tough challenge due to the high energy content of plastic, paper, cardboard and wood components which are still contained in the low caloric output fraction of the MBT of municipal and commercial waste as those materials have a much higher upper caloric value. From the resource conservation point of view the utilization of these waste components for energetic purposes is desirable too.
The implementation of the legal framework as one measure battling climate change as well as constantly rising energy prices have caused a change from pure waste management with the intention to reduce the organic content in waste, to the point where high caloric components have become a substitute for fossil fuels in certain sectors of industries (cement industry, pulp & paper industry, steel works, etc). Using waste derived or so-called refuse derived fuel (RDF) demands high purity in order to secure environmental standards as well as product quality and therefore process related requirements have to be met. This can be achieved by 1) qualified selection of the waste streams into the treatment plants and 2) by processing technologies allowing the separation of wanted/unwanted waste components within the plant concept. In cooperation with a regional waste management company, responsible for the treatment and disposal of 82,000 t/a of municipal and commercial waste and operator of a MBT plant as well as a landfill, further processing of a specific output waste stream from the MBT plant was analysed in order to allow an optimized routing of the output streams including the energetic utilization of high caloric components and landfilling of low caloric and inert components. Experiments using the innovative treatment technology of sensor based sorting were conducted with a waste stream characterized by 59 % high caloric components (polymers, paper and cardboard, wood), 8 % other organic components, 27 % inert waste, 3 % metals and 3 % other waste (textiles, fine fraction < 20 mm, hazardous waste). The particle size of that particular waste stream is 20-80 mm. The sorting machine was a NIR (near infrared) multiplex sensor based sorting system with a wavelength of 1,400-1,900 nm in pilot scale. Results showed that by varying the parameters air pressure (bar), scanning speed (Hz), blow out time (ms) and the evaluation of spectra, about 76 % of polymers, 86 % of wood and 96 % of paper and cardboard of the input fractions could be separated from the inorganic waste stream. The remaining components were inert waste (53%), metals (3 %), other waste (textiles, contaminated waste, fine fraction < 20 mm) (3 %), but also dark polymers (12 %), undefined organics (e.g. fruits, vegetables) (9%) and still 20 % of polymers, wood, paper and cardboards. Due to the high portion of organic components and dark polymers in the stream, the threshold of 6,600 kJ/kg DM defined for waste to be landfilled could not be met. Further experiments with a more sensitive sorting system, a spectral imaging technology (wavelength up to 2,500 nm), are planned, supposing that the rejection rate of dark polymers could be increased. Theoretical considerations have shown that in that case the threshold could be met.

Conference presentations and posters | 2010

Investigations of aerosol formation pathways during MSW combustion based on high-temperature impactor measurements

Brunner T, Fluch J, Obernberger I, Warnecke R. Investigations of aerosol formation pathways during MSW combustion based on high-temperature impactor measurements, Impacts of Fuel Quality on Power Generation 2010, 29th of August-3rd of September 2010, Saariselka, Lapland.

Details
Other papers | 2010

Modelling of grate combustion in a medium scale biomass furnace for control purposes

Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I. Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass Bioenergy. 2010;34(4):417-27.

External Link Details

A new mathematical model for the grate combustion of biomass has been derived from physical considerations. Various models for grate combustion can already be found in the literature. Usually their intention is to simulate the real situation in a furnace as precisely as possible. Hence they are very detailed, typically consisting of many partial differential equations. However, because of their complexity they are useless for control purposes. The new model is very simple, consisting of only two ordinary differential equations, which makes it particularly suitable as a basis for model based control strategies. To verify the model, experiments were performed at a pilot scale furnace with horizontally moving grate. The pilot plant is a downscaled version (180 kWth) of a typical medium scale furnace in terms of geometry and instrumentation. Comparison of the measured and calculated values shows good agreement. © 2009 Elsevier Ltd. All rights reserved.

Other Publications | 2010

Niedertemperatur Drehrohrpyrolyse als Vorschaltprozess für die Co-Verbrennung von unkonventionellen Brennstoffen in thermischen Anlagen

Kern, S. Niedertemperatur Drehrohrpyrolyse als Vorschaltprozess für die Co-Verbrennung von unkonventionellen Brennstoffen in thermischen Anlagen, Master Thesis, Technische Universität Wien, Vienna, Austria, 2010.

Details
Conference presentations and posters | 2010

Optimisation of biomass grate furnaces with a new 3D packed bed combustion model - on example of a small-scale underfeed stoker furnace

Mehrabian R, Scharler R, Weissinger A, Obernberger I. Optimisation of biomass grate furnaces with a new 3D packed bed combustion model - on example of a small-scale underfeed stoker furnace, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. p 1175-1183.

Details

The design and optimisation of a biomass grate furnace requires accurate and efficient models for the
combustion process on the grate as well as the turbulent reactive flow in the combustion chamber. Computational Fluid Dynamics (CFD) have been successfully applied for gas phase combustion. However, no numerical models for the biomass packed bed combustion, which can be used as engineering design tools, are commercially available at present. This paper presents an innovative 3D CFD model for biomass packed bed combustion consisting of an Euler-Granular model for hydrodynamics of gas-particle multiphase flow and a thermally thin particle model for combustion of biomass particles. Modelling the particle trajectories and the thermal conversion of each particle in the bed constitutes the simulation of the entire bed combustion. The simulation of a small-scale underfeed stoker furnace of KWB has been successfully performed by the application of the new packed bed combustion model. The positions of the drying, pyrolysis and char burnout zones in the fuel bed as well as the temperature distribution among the particles seem to be plausible and could be confirmed by observations. Furthermore, a good qualitative agreement concerning the flue gas temperatures measured by thermocouples at different positions in the combustion chamber, and CO emissions measured at boiler outlet could be achieved. The new packed bed model provides the advantages of considering the release profiles of species and energy from the fuel bed close to reality and enables to consider the chemical compositions, size and physical properties of the fuel particles as well as the influence of primary air
distribution and grate motion on the particle trajectories.

Conference presentations and posters | 2010

PM emissions from old and modern biomass combustion systems and their health effects

Kelz J, Brunner T, Obernberger I, Hirvonen M, Javala P. PM emissions from old and modern biomass combustion systems and their health effects, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. p 1231-1243.

Details

Conference presentations and posters | 2010

Production of Synthetic Biofuels in existing Industry - Simulation of FICFB and Fischer - Tropsch - Process in IPSEpro

Weber G, Potetz A, Rauch R, Hofbauer H. Production of Synthetic Biofuels in existing Industry - Simulation of FICFB and Fischer - Tropsch - Process in IPSEpro, ICPS 2010, 7th-9th of September 2010, Leipzig, Germany.

Details

In cooperation between Vienna University of Technology and Bioenergy 2020+ a project was done which had the objective to evaluate the prospects for the production of Biofuels by integration in existing Austrian biomass industry. The advantages of such integration are the good access to renewable energy resources like wood chips, existing infrastructure for electricity and heat, existing logistics of resources and the utilization of waste heat from Biofuel production to substitute fossil fuels. One work package included the process simulation of thermo-chemical biomass gasification and the production of a second generation Biofuel by the use of Fischer – Tropsch (FT) - synthesis. The process simulation tool IPSEpro was used for the simulation. The simulation of technical processes allows the prediction of the behavior of processes on the base of mathematical models. The quality of a simulation model depends substantially on the used model and the process parameters. The used technologies in the process simulation were the biomass gasification with the Fast Internal Circulating Fluidized Bed (FICFB) – gasification system and the Fischer –Tropsch (FT) - synthesis. The FICFB was developed by the Vienna University of technology. This gasification technology is used in the well known demonstration plant is Güssing (Austria). The produced product gas is nearly nitrogen free and has a high content of hydrogen (45 – 35 Vol%dry) and carbon monoxide (25 – 20 Vol%dry). These product gas components are used in the FT - synthesis for the production of FT – raw product. A FT - Trial Plant is also situated in Güssing since the year 2005. A slurry reactor is used in the Trial Plant for the FT – synthesis. The target for the simulation was the production of FT – raw product as well as the substitution of fossil fuels. The waste heat of the process should be used for the production of steam. An amount of 120 tons per hour of fossil produced steam should be substituted. The
Off-Gas of the FT – process was also used for the production of steam. Two different models for location number one were considered. The used fuel was wood chips. The data out of the simulation were used to calculate the economic efficiency of the plants. An important parameter was the price of the FT – raw product per liter. The total costs and the production capacity were set equal to calculate the marginal revenue. Also a sensitivity analysis was done to evaluate the effects of rising fuel costs and increased investment costs.

Conference presentations and posters | 2010

Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant

Kern S, Halwachs M, Pröll T, Kampichler G. Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant, 18th European Biomass Conference and Exhibiton 2010, 3th-7th May 2010, Lyon, France. p 950-955.

Details

A pyrolysis process can be used to split up the biomass in a volatile fraction poor in undesired substances (Cl, N, S,
Na and K) and a char fraction where these substances are concentrated. In this way cheap biomass can be used for cofiring in existing fossil fuel power stations without the danger of corrosion, deposition, and emission problems. The aim of the project is the development and demonstration of a biomass pretreatment process based on pyrolysis in the temperature range between 450-650 °C to split the energy in the biomass into volatiles with a low content of the above mentioned undesired compounds and char, where most of these pollutants are concentrated. The balance of the system can provide important results, such as the development of the product spectrum by a function of the operating parameters. Based on the results of the pilot plant a scale up to a capacity of 30 MWth fuel input and the connection with the coal fired power plant is currently investigated.

Filter

Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter*innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite