

Bioenergy and Sustainable Technologies

Bundesministerium Digitalisierung und Wirtschaftsstandort 💳 Bundesministerium Verkehr, Innovation und Technologie

agentur wien Ein Fonds der Stadt Wien

wirtschafts

2

6th Central European Biomass Conference

Advanced Test Methods for Pellet Stoves – A Technical Review

24.01.2020, Graz, Austria

Gabriel Reichert, Christoph Schmidl

Bundesministerium Digitalisierung und Wirtschaftsstandort
 Bundesministerium
 wirtschafts agentur

 Verkehr, Innovation
 wien

 und Technologie
 wien

Introduction

Why we have to look at test methods?

- What is the purpose of test protocols?
- They should guarantee the ...
 - Product quality
 - Product safety
 - Product reliability
- They should push technological development further!
- They should reflect the "truth" or the "reallife" performance
- What could happen, if test protocols **loose** their reliability?

<u>Source</u>: <u>https://greennews.ie/irelands-own-dieselgate-the-dieselisation-of-irelands-</u> <u>car-fleet-amidst-global-decline/</u> (accessed Jan. 2020)

Objectives & Approach

- For **pellet stoves** the testing concepts shall become more real-life relevant. Therefore, the objectives are...
 - Comparing existing testing protocols worldwide
 - Evaluating the real-life use of pellet stoves & identification of most relevant parameters for emission and efficiency performance
 - Evaluating a newly developed lab testing method focusing on real-life performance ("beReal")
 - Analyzing real-life relevance of testing results based on existing EN standard and the advanced testing method ("beReal")

4

- 1. Relevance of pellet stoves: Stock and market
- 2. Existing test standards & Novel test concept "beReal"
- 3. EN test results: Official type test results (also in comparison to wood stoves) & Comparing lab with field

Results Overview of stock & main features

• Compared to manual fired stoves their stock number is **small** (~ 1%)

6th Central European Biomass Conference

^{24.01.2020}

Results Trend of stock and market

- However, compared to 2007 the stock has increased by almost 600%
- This growth illustrates their increasing **popularity** and **relevance** among direct room heating systems, especially in **Italy** and **France**
- Annual sales ranged around 10% of the stock in 2016 and 2017

Source: EPC survey 2018, Bioenergy Europe, Statistical report 2018

- It can be expected that the stock of pellet stoves and their share among direct room heating appliances will further increase in future!
- 6th Central European Biomass Conference

Results Overview of existing test standards

- Australian/New Zealand test protocol AS/NZS
 - AS/NZS 5078:2007 Domestic solid fuel burning appliances Pellet heaters
 Method for determination of power output and efficiency
 - AS/NZS 4886:2007 Method for determination of flue gas emission
 - AS/NZS 4014.6:2007 Wood Pellets
- Canadian test protocol CSA
 - CSA B415.1-10 (2010) Performance testing of solid-fuel-burning heating appliances
- US standards ASTM
 - ASTM E2779 10 (2017): Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters
- European test protocol EN
 - DIN EN 14785:2006 Residential space heating appliances fired by wood pellets – Requirements and test methods

Results Overview of existing test standards: AS/NZS 5078:2007, AS/NZS 4886:2007 and AS/NZS 4014.6:2007

- Preconditioning
 - Tested stoves have to be operated before testing by two separate burn periods, each of them lasting at least 8 h at the maximum burn rate (time in between at least 4 h)
- Fuel
 - Wood pellets, moisture content in range of 4% to 8%, bulk density (≥ 640 kg), ash ≤ 0.5%, H_u:18 – 21 MJ/kg, Pellet size: Ø max. 10 mm and length ≤ 38 mm
- **Test burn period** (two test runs for each burn rate mandatory, at least 2 h per burn rate)
 - Ignition and operation until the respective burn rate is achieved (within ±10%) (one or more hours) →
 Test of three burn rates ("high" = maximum, "low" = minimum, "medium" = ± 10% of midpoint of high and low) using a calorimeter room → PM sampling during the whole test run (in diluted flue gas)
 - Appliances without controlling options are only tested at high burn rate; thermostatic controllers for heating operation in accordance with room temperature must be disabled

Results

- Average particulate emission factor based of each of the tested burn rates in "g/kg dry fuel"
- Thermal efficiency based on two <u>consecutive</u> test burn periods which deviates $\leq 5\%$

Overview of existing test standards: CSA B415.1-10 (2010)

Preconditioning

- Tested non-catalytic stoves have to be operated before testing for **10 hours** (medium burn rate)

• Fuel

- Wood pellets of each specified grade by the manufacturer have to be tested, moisture content ≤ 8%;
 Potential types of allowed other fuels (e.g. wood chips, corn) have to be tested, too
- **Test run** (three test runs for each burn rate mandatory, at least 2 h per burn rate)
 - Ignition and 1 h operation at the high burn rate \rightarrow Test of **4 burn rates** (\leq 30%, 44%, 65%, 100%)
 - **PM sampling** during the whole test run (in **diluted** flue gas)
 - For stoves that are automatically controlled, e.g. by a room thermostat: **artificial manipulation** of the controls (on-off operation)

Results

- Average particulate emission rates including the required test runs in "g/h" or "g/MJ of <u>heat</u>
 <u>output</u>" are calculated (special procedure, weighted by the burn-rates of all test runs)
- Average thermal efficiency and average carbon monoxide emissions are calculated (special procedure, weighted by the burn-rates of all test runs)

Results Overview of existing test standards: US standards – ASTM E2779 – 10 (2017)

- Preconditioning
 - Tested stoves have to be operated before testing for **48 hours** (medium burn rate)
- Fuel
 - All types of allowed fuel have to be tested; in case of different fuel grades: the lowest grade has to be used
- Integrated test run (at least one mandatory)
 - Ignition and 1 h operation at the high burn rate → Test at maximum (60 min, maximum achievable),
 medium (120 min, ≤ 50% of maximum) and minimum (180 min, minimum achievable) burn rate
 - **PM sampling** during the whole integrated test run (in **diluted** flue gas) \rightarrow **load changes** included
 - For stoves that are automatically controlled, e.g. by a room thermostat: artificial manipulation of the controls (high burn-rate: 60 minutes-on; medium burn-rate: two cycles of 30 minutes-on and 30 minutes-off; low burn rate: three cycles of 20 minutes-on and 40 minutes-off)

Results

10

 Average particulate emission rates over the whole test run in "g/h", "kg/dry kg of fuel burned" or "g/MJ of <u>heat output</u>" (if the <u>optional</u> thermal heat output is measured)

O

Results

Overview of existing test standards: DIN EN 14785:2006

- Preconditioning
 - No special requirements
- Fuel
 - − **Commercial** wood pellets with most relevant parameters: moisture content ≤ 12%, ash ≤ 0.7%, H_u :16.9 19.5 MJ/kg, Pellet size: Ø 4 mm 10 mm and length ≤ 50 mm
- Test run (at least one test run including nominal and partial load)
 - Ignition and preheating (at nominal load) → Start of test run when stationary conditions are achieved (flue gas temperature is stable ± 5K)
 - Nominal load = defined by manufacturer; Partial load = minimum
 - Test of the appliance at **nominal** $(\geq 3 h)$ and **partial load** $(\geq 6 h)$
 - Partial load testing after nominal load test possible or as single test run after ignition and preheating

Results

- Average CO emissions (mg/m³, STP, dry, 13 vol.-% O₂) and thermal efficiency mandatory (average of two test intervals, e.g. 30 minutes, for nominal and partial load, respectively)
- No respective procedure for PM emissions (however, up to now PM is measured most frequently acc. to CEN/TS 15883: Gravimetric measurement in **hot** and **undiluted** flue gas)
- 6th Central European Biomass Conference

• **Pellet stoves** – What are or might be the main influencing factors on emissions and thermal efficiency in real-life operation?

Results How are pellet stoves operated in real-life?

- European user survey (Source: WÖHLER et al. 2016)
 - Most pellet stoves are used as secondary heating system
 - Heating operation of pellet stoves is either controlled by a room thermostat (36%), or directly by the users (35%) or by a clock timer (25%)
 - Thermal heat output is typically adjusted by the users during heating operation
 - Highest power is only marginally used (10%), predominantly the stoves are operated at a reduced power level or in a mixed operation of different power levels (90%)
- Field monitoring (Source: OEHLER et al. 2016, HARTMANN & OEHLER 2017)
 - Also field monitoring revealed a high share of partial load operation and the significance of cold and warm starts of the total heating operation time of pellet stoves
- Realistic testing of pellet stoves should include different load settings, load changes as well as cold and warm starts

Results Impact factors on emissions and thermal efficiency

Most relevant findings – up to now!

- Cleaning interval (Source: REICHERT et al. 2017)
 - The automatic cleaning of the grate increases gaseous and particulate emissions and reduces thermal efficiency
- Fuel (<u>Source:</u> REICHERT et al. 2017)
 - Experimental tests showed that there could be large emission variations when different pellets are used (even when only EN_{plus} certified pellets were used)
- Pellet length (Source: WÖHLER et al. 2017)
 - Results showed a reduced fuel mass flow (up to 36%) into the combustion chamber for long pellets (Ø 22,6 mm) compared to short pellets (Ø length 17,5 mm)
 - CO and TSP emissions of one stove increased for long pellets compared to short pellets from 185 mg/m³ to 882 mg/m³, and from 27 mg/m³ to 37 mg/m³ respectively (nominal load operation).

"beReal" - A novel test concept for pellet stoves (Source: REICHERT et al. 2016)

- Preconditioning of the stove by at least 6 h of operation before "beReal" testing
- Test cycle of 7.5h duration and including **3 phases** with different **load settings** (one cold start and two warm starts) as well as one **load change** and two **stand-by** phases

Source: KLAUSER et al. 2018, adapted

• Cleaning intervals of the stove are included in the test cycle

Database on official type test results (ott, EN test standards)

- Data from the study SCHIEDER et al. 2013:
 - CO: n = 941
 - OGC: n = 219
 - PM: n = 996
 - Efficiency: n = 1577
- Official type test results for pellet stoves show better performance in terms of emissions and thermal efficiency compared to wood stoves
- Future ecodesign ELVs...
 - ...met for CO (210 mg/MJ) & OGC (42 mg/MJ)
 - ...not achieved for PM (14 mg/MJ)
- 6th Central European Biomass Conference

a...conventional technologies / b...modern technologies /

--- ELV ecodesign (CO: 300 mg/m³; OGC: 20 mg/m³, PM: 20 mg/m³ (STP, 13 vol.-% O₂, dry) → transferred to mg/MJ

6th Central European Biomass Conference

Results Lab versus field

Evaluation of real-life relevance: New test method (*"beReal"*) compared to current test method (EN 14785) with 4 serial production appliances

- **Official type test** .
 - Official type test of the used stove models
- Tests in the lab
 - RTD type test, nominal load (EN 14785)
 - "beReal" test cycle for pellet stoves
- **Field tests**
 - Operation acc. to the users own habits (own fuel)
 - Operation acc. to the users own habits (same fuel as used by RTD institutes)
 - "beReal" test cycle for pellet stoves

24.01.2020

Source: BEST GmbH

appilances aner

Lab versus field – Evaluation of real-life performance

- Higher emissions for CO and PM as well as lower thermal efficiency during RTD type tests observed
- Emissions of field performance about 300% higher for CO and about 100% for PM emissions (i.c. to ott results)
- OGC emissions very low
- Thermal efficiency around 85% in real-life operation
- "beReal" tests in the field were in a good agreement with "beReal" tests in the lab as well as with the user's heating operation → <u>But:</u> Fuel impact is obvious

--- ELV ecodesign (CO: 300 mg/m³; OGC: 60 mg/m³, PM: 20 mg/m³ (STP, dry, 13 vol.-% O₂) → transferred to mg/MJ

Field and lab test results compared to emission factors

- Both types of emission factors (EFs) clearly deviate for OGC and PM emissions
- Field test results are in general **in the range** of the proposed emission factors
 - **CO** both types of EFs fit quite well
 - OGC EFs by trend higher compared to field performance, (AIIR-EF in general too high)
 - PM AIIR-EF fits good to field results; EMEP/EEA-EF for PM (TSP) of pellet stoves was increased from 31 mg/MJ (2016) to 62 mg/MJ (2019)
- "beReal" test appears to be a promising concept to evaluate EFs on the test bench

Summary & Conclusions

Advanced Test Method

IEA Bioenerg

- Most relevant **differences** of **testing concepts**: Number of tested load settings, repetitions of measurements, respected emissions and PM measurement procedure
 - International standardization (ISO) however seems feasible and would strongly support industry.
- The comparison of **lab** and **field** test results showed **higher emissions** and **lower thermal efficiency** in field operation compared to official type test results
- Important factors on real-life operation performance are load settings as well as transient phases, like ignition, load changes and cleaning intervals
 - Advanced test methods should also include those phases to push technological development into the right direction
- The fuel has an significant influence on emissions (even when using certified high quality pellets)
 - Further research about relevant fuel parameters or technology restrictions which cause such variations is needed

Detailed information available soon: IEA Bioenergy Report – "Advanced Test Methods for Pellet Stoves"

6th Central European Biomass Conference

Information

Detailed information about this topic focusing of firewood stoves is already available:

- <u>Title:</u>
 - "Advanced Test Methods for Firewood Stoves Report on consequences of real-life operation on stove performance"
- Link/ Download:
 - <u>https://www.ieabioenergy.com/wp-</u> <u>content/uploads/2018/11/IEA_Bioenergy_Task32_</u> <u>Test-Methods.pdf</u> (accessed Jan. 2020)

References 1

٠

AS/NZS 5078:2007 – Domestic solid fuel burning appliances – Pellet heaters – Method determination of power output and efficiency, Standards Australia/Standards New Zealand, Sydney & Wellington.

- AS/NZS 4886:2007 Method for determination of flue gas emission, Standards Australia/Standards New Zealand, Sydney & Wellington.
- AS/NZS 4014.6:2007 Wood Pellets, Standards Australia/Standards New Zealand, Sydney & Wellington.
- ASTM E2779 10 (2017): Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters, ASTM International, United States.
- AUSTRIA'S INFORMATIVE INVENTORY REPORT (IIR) 2018, Umweltbundesamt GmbH, Vienna, 2018, Online available: https://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0641.pdf (accessed Jan. 2020).
- Bioenergy Europe, Statistical Report, 2018 Edition.
- COMMISSION REGULATION (EU) 2015/1185 of 24 April 2015 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for solid fuel local space heaters, Official Journal of the European Union, 21.7.2015; Online available: <u>https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/lot-20-local-room-heating-products/celex-32015r1185-en-txt.pdf</u> (accessed Jan. 2020).
- CSA B415.1-10:2010: Performance Testing of solid-fuel-burning heating appliances, Canadian Standards Association, March 2010.
- CEN/TS 15883:2009; Residential solid fuel burning appliances Emissions test methods, German version, Beuth Verlag, 2009, 1–28 p.
- DIN EN 14785:2006 09 Residential space heating appliances fired by wood pellets Requirements and test methods, German Institute for Standardization, Berlin: Beuth, 2006.
- EC DG TREN: Preparatory Studies for Eco-Design Requirements of EuPs (II) LOT 15 Solid fuel small combustion appliances, Task 1: Scope and Definitions, France, 2009, p. 1-116. Online available: <u>http://www.eup-</u> network.de/fileadmin/user_upload/Produktgruppen/Lots/Working_Documents/BIO_EuP_Lot_15_Task1_Final.pdf (accessed at Jan 2020).
- EEA, 2019. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 (EEA Report No 13/2019). Online available: <u>https://www.eea.europa.eu/themes/air/air-pollution-sources-1/emep-eea-air-pollutant-emission-inventory-guidebook</u> (accessed Jan. 2020).
- EEA, 2016. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016 (EEA Report No 21/2016). Online available: <u>https://www.eea.europa.eu/themes/air/air-pollution-sources-1/emep-eea-air-pollutant-emission-inventory-guidebook</u> (accessed Jan. 2020).
- KLAUSER F., CARLON E., KISTLER M., SCHMIDL C., SCHWABL M., STURMLECHNER R., HASLINGER W., KASPAR-GIEBL A., Emission characterization of modern wood stoves under real-life oriented operating conditions, Atmospheric Environment 192 (2018) 257–266. <u>https://doi.org/10.1016/j.atmosenv.2018.08.024</u>.
- 6th Central European Biomass Conference

References 2

٠

23

- HARTMANN H. & OEHLER H., The "beReal" test method for pellet stoves, IEA Bioenergy Task 32 workshop: Practical test methods for small-scale furnaces, 5. Central European Biomass Conference, 18-20.01. 2017, 19.01.2017, Graz, Austria. Online available: http://www.bereal-project.eu/uploads/1/3/4/9/13495461/14.00_the_bereal_test_method_for_pellet_stoves. Define available: http://www.bereal-project.eu/uploads/1/3/4/9/13495461/14.00_the_bereal_test_method_for_pellet_stoves. Define available: http://www.bereal-ber
- OEHLER H., MACK R., HARTMANN H., PELZ S., WÖHLER M., SCHMIDL C., REICHERT G., Development of a Test Procedure to Reflect the Real Life Operation of Pellet Stoves, 24th European Biomass Conference and Exhibition, 6-9 June 2016, Amsterdam, The Netherlands.
- REICHERT G., STURMLECHNER R., STRESSLER H., SCHWABL M., SCHMIDL C., OEHLER H., MACK R., HARTMANN H., Deliverable 3.3 Final Report: Definition of Suitable Measurement Methods and Advanced Type Testing Procedure for Real Life Conditions, 30 September 2016, 35p., Online available: <u>http://www.bereal-project.eu/uploads/1/3/4/9/13495461/d3.3 definition of suitable measurement_methods final_1.pdf</u> (accessed Jan. 2020).
- REICHERT G., SCHMIDL C., STRESSLER H., STURMLECHNER R., HOCHENAUER C, HARTMANN H., SCHÖN C., MACK R., OEHLER H.: The "beReal" Project – Scientific Highlights, IEA Bioenergy Task 32 workshop: Practical test methods for small-scale furnaces, 5. Central European Biomass Conference, 18-20.01. 2017, 19.01.2017, Graz, Austria. Online available: <u>http://task32.ieabioenergy.com/wp-</u> <u>content/uploads/2017/03/14.20 The beReal Project - Scientific Highlights.pdf</u> (accessed Jan. 2020).
- RÖNNBÄCK M., PERSSON H., JESPERSEN G. M., JENSEN J. H.: Deliverable D7.1 Documentation and evaluation of field data demonstration, 30.
 September 2016, 36p. Online available: <u>http://www.bereal-project.eu/uploads/1/3/4/9/13495461/d7.1 documentation and evaluation of field data demonstration final 1.pdf</u> (accessed Jan. 2020).
- SCHIEDER W., STORCH A., FISCHER D., THIELEN P., ZECHMEISTER A., POUPA S., WAMPL S.: Luftschadstoffausstoß von Festbrennstoff-Einzelöfen – Untersuchung des Einflusses von Festbrennstoff-Einzelöfen auf den Ausstoß von Luftschadstoffen, Umweltbundesamt GmbH (Ed.), ISBN 978-3-99004-253-3, Wien, 2013, 368 p., Online available: <u>http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0448.pdf</u> (accessed at 06.04.2017).
- WÖHLER M., Untersuchungen zum Einfluss des Nutzerverhaltens auf die Leistungsfähigkeit von Biomasse betriebenen Einzelraumfeuerstätten, Dissertationsschrift, Freiburg im Breisgau 2017, (2017a).
- WÖHLER M., ANDERSEN J. S., BECKER G., PERSSON H., REICHERT G., SCHÖN C., SCHMIDL C., JAEGER D., PELZ S. K.: Investigation of real life operation of biomass room heating appliances – Results of a European survey, Applied Energy 169, 2016, 240–249. <u>https://doi.org/10.1016/j.apenergy.2016.01.119</u>.
- WÖHLER M., JAEGER D., REICHERT G., SCHMIDL C., PELZ S. K.: Influence of pellet length on performance of pellet room heaters under real life operation conditions, Renewable Energy 105 (2017) 66-75. <u>http://dx.doi.org/10.1016/j.renene.2016.12.047</u>.
- More information about the "beReal" project available: <u>http://www.bereal-project.eu/</u>

6th Central European Biomass Conference

Thank You For Attention

Gabriel Reichert gabriel.reichert@best-research.eu Christoph Schmidl christoph.schmidl@best-research.eu

BEST – Bioenergy and Sustainable Technologies GmbH Inffeldgasse 21b A-8010 Graz <u>https://best-research.eu/de</u>

Acknowledgements: This study was done on behalf of the IEA Bioenergy (Task 32).

24.01.2020, Graz, Austria

Bundesministerium
 Digitalisierung und
 Wirtschaftsstandort

um **= Bundesministerium** nd Verkehr, Innovation dort und Technologie wirtschafts agentur wien Ein Fonds de Stadt Wien

